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ABSTRACT

Controlled Natural Language Generation

for Morphologically Rich Languages: The Case of Arabic

by

Bashar Alhafni

Advisor: Prof. Nizar Habash

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Computer Science)

May 2025

Recent breakthroughs in natural language processing (NLP) have led to the development

of natural language generation (NLG) systems, such as large language models (LLMs),

that can produce fluent, human-like text. However, these models are predominantly

pretrained on data that is mostly in English, limiting their performance on languages with

less representation. This challenge is further amplified by the fact that languages differ in

their morphological complexity. For example, languages like Arabic are morphologically

rich, featuring a high number of inflections for a single base word. In contrast, languages

like English are morphologically poorer, with fewer inflections and simpler word forms.

Additionally, current NLG models are challenging to control and often over-generate,

making them unreliable for tasks that require high precision or for generating outputs

tailored to specific user preferences.
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Arabic presents additional challenges for NLG. Unlike English, it is orthographically

ambiguous, as it uses optional diacritics to indicate short vowels and consonantal doubling.

Since these diacritics are typically omitted, readers must rely on contextual and templatic

morphology clues to deduce meaning, making disambiguation a core challenge for Arabic

NLP. Additionally, Arabic is diglossic, with Modern Standard Arabic (MSA) coexisting

alongside Dialectal Arabic (DA). MSA serves as the standard form of the language and it

is used in news, education, and official communication, yet it is not the native language

of any Arabic speaker and often suffers from orthographic inconsistencies. In contrast,

DA, which is primarily spoken, lacks standardized orthography. The rise of social media

has led to a surge in written DA content, but without established spelling conventions,

this data remains highly inconsistent and noisy. Furthermore, annotated resources for DA

are scarce across dialects, further complicating the development of Arabic NLP.

This dissertation addresses these challenges by introducing controlled NLG ap-

proaches tailored to Arabic. We develop NLG models for three key Arabic NLG tasks

that contribute to AI in social good and education: gender rewriting, grammatical error

correction, and dialectal text normalization. Beyond introducing state-of-the-art models,

our work contributes new datasets that enable new Arabic NLG tasks, expanding the

resources available for Arabic NLP. We propose controllable modeling strategies that

incorporate linguistic traits into NLG systems. While many linguistic traits shape how

we communicate and use language, this dissertation focuses on three that directly impact

writing in Arabic: grammatical gender, error patterns, and dialect. Although Arabic is

our primary focus, the insights and techniques developed here extend to other morpho-

logically rich languages, promoting the advancement of more inclusive and controllable

NLG systems.
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Chapter 1

Introduction

In this chapter, we present an overview of the dissertation, starting with the main motiva-

tions behind this work and the challenges in Arabic natural language generation. Next, we

outline the structure of the dissertation, summarizing the content of each chapter. We then

highlight the main research contributions before concluding with a list of publications

directly related to this work.

1.1 Overview and Motivation

Enabling computers to automatically generate natural text is what initially started the

development of the natural language processing (NLP) field as we know it today. Interest

in natural language generation (NLG) dates back to the 1950s. This was evident in

the development of the first machine translation (MT) system at the beginning of the

Cold War (Hutchins, 2004), as well as in Alan Turing’s proposal for a new criterion

to measure intelligence, which involved a computer’s ability to mimic human written

conversation to the point where it cannot be distinguished from a human (Turing, 1950).

By the 1960s, NLG research expanded into areas such as paraphrasing (Klein, 1965),
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discourse generation (Klein and Simmons, 1963), and dialogue generation (Weizenbaum,

1966). However, NLG proved to be a challenging problem, and early attempts relied

heavily on rule-based systems, which had limited success in generating coherent and

flexible text from structured data (McKeown, 1985; Shieber et al., 1989; Smadja and

McKeown, 1994; Beesley, 1996). With the advancements in statistical machine learning,

NLG approaches shifted from rule-based to data-driven models (Radev et al., 2002;

Koehn et al., 2003; Charniak et al., 2003). The rise of deep learning and increased

computational power further transformed NLG, enabling more sophisticated models

for text generation (Hochreiter and Schmidhuber, 1997; Cho et al., 2014; Bahdanau

et al., 2015; Vaswani et al., 2017). In particular, large-scale self-supervised pretraining

(Peters et al., 2018; Devlin et al., 2019; Yang et al., 2019a) significantly improved NLG

performance, leading to models like BART (Lewis et al., 2020) and T5 (Raffel et al.,

2020). More recently, large language models (LLMs) have demonstrated the ability to

frame almost any NLP task as a generation problem, achieving strong zero- and few-

shot performance through prompting (Kojima et al., 2023; Wei et al., 2023; Touvron

et al., 2023; Almazrouei et al., 2023; OpenAI et al., 2024). Despite these advancements,

current NLG approaches still face key limitations that hinder their broader applicability,

particularly for morphologically rich languages like Arabic. This dissertation addresses

two key challenges: English-Centricity and Limited Controllability.

English-Centric NLG: Current state-of-the-art NLG models are typically deep encoder-

decoder or decoder-only neural networks based on the transformer architecture (Vaswani

et al., 2017). These models are pretrained on massive amounts of unannotated text,

primarily sourced from the web, to achieve strong performance. For example, LLaMA-3

(Grattafiori et al., 2024) was trained on 15 trillion tokens of web data. However, En-
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glish dominates web content. According to the latest statistics from Common Crawl–a

non-profit organization that regularly captures snapshots of the web–English accounts

for 46% of all textual content, while most other languages are limited to around 6%

(Rana, 2010). Arabic, despite being spoken by over 400 million people and serving as

the official language of more than 20 countries, makes up only about 0.5% of web data.

This severe underrepresentation presents a significant challenge for Arabic NLG, as mod-

els trained primarily on English-centric data struggle to capture Arabic morphological

richness and diglossic nature. While multilingual pretraining efforts (e.g., GPT-3 (Brown

et al., 2020), BLOOMZ (Muennighoff et al., 2023)) aim to expand linguistic coverage,

underrepresented languages still perform worse than high-resource ones (Joshi et al.,

2020; Pfeiffer et al., 2020; Patra et al., 2023; Asai et al., 2024). This highlights the need

for targeted research on Arabic NLG to create more inclusive NLP technologies that

capture their linguistic characteristic and cultural impact.

Limited Controllability in NLG: In conditional NLG, the goal is to generate an output

sequence Y = y1, y2, ..., yn given an input sequence X = x1, x2, ..., xm. This process is

typically modeled through the following autoregressive distribution:

P (Y |X) =
nY

t=1

P (yt|y1, ..., yt�1, X)

Different NLG tasks require varying degrees of control over the generated text. For

example, grammatical error correction demands a high level of precision, as the output

should closely resemble the input, with only minimal modifications. In contrast, tasks

like MT allow for more flexibility in phrasing while preserving meaning. However, most

state-of-the-art NLG models, particularly LLMs, struggle with controlled generation

(Sun et al., 2023). They often introduce unnecessary changes by adding, removing, or
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paraphrasing content, even when minimal edits are required (Fang et al., 2023; Davis et al.,

2024). This lack of fine-grained control not only degrades user experience but also limits

the applicability of these models in tasks that require high fidelity to the input. Another

critical aspect of controllability in NLG is ensuring that generated outputs align with

user-specific requirements. Most standardized NLG tasks assume a single, objectively

correct output, but in many real-world applications, the correct output depends on the

user’s context, preferences, or identity. The inability of existing models to incorporate

such user-specific constraints makes them inflexible and often inappropriate. A case in

point is the “I-am-a-doctor and you-are-a-nurse” MT problem in many gender-marking

languages such as Arabic, where single-output user-unaware MT often results in “I

am a [male] doctor and you are a [female] nurse”, which is inappropriate for female

doctors and male nurses, respectively. A controllable NLG system should allow users to

specify preferences, ensuring that the generated output better reflects their identity and

expectations (Sun et al., 2019; Blodgett et al., 2020).

These challenges make NLG a compelling area of research. In this dissertation, we

address these limitations by developing controlled NLG approaches specifically designed

for Arabic. Our work focuses on three key tasks: gender rewriting, grammatical

error correction, and dialectal text normalization. While many traits shape how

individuals write, we focus on those that have a direct impact on Arabic writing, such

as grammatical gender, error types, and dialect. For each task, we propose controllable

modeling approaches that incorporate these traits to enhance the controllability of NLG

systems. Each chapter introduces the task, discusses its challenges, and presents our

contributions. Although our primary focus is Arabic, the models and insights developed

in this dissertation have broader applicability to other morphologically rich languages.
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1.2 Dissertation Outline

The rest of the dissertation is divided into the following chapters:

Second Chapter: Arabic Linguistic Background In the second chapter, we provide a

linguistic overview of the Arabic language and its dialects, focusing on its morphological

richness and orthographic ambiguity. We discuss the challenges that Arabic NLG

systems encounter when processing diverse and noisy text, highlighting the complexities

introduced by grammatical variation and dialectal differences.

Third Chapter: NLG Background The third chapter provides a background on

NLG, covering its evolution from rule-based methods to neural models, along with key

applications and architectures. It then introduces controlled NLG and its techniques

before summarizing the NLG tasks explored in this dissertation.

Fourth Chapter: Arabic Gender Rewriting In chapter four, we introduce the task

of Arabic gender rewriting and present a new dataset that enables its study. We develop

multiple gender rewriting models and demonstrate how gender rewriting can effectively

reduce bias in machine translation systems. Lastly, we share key findings and lessons

learned from a shared task we organized on Arabic gender rewriting.

Fifth Chapter: Grammatical Error Correction This chapter presents the first results

on Arabic grammatical error correction using pretrained sequence-to-sequence models.

We also introduce the task of multi-class Arabic grammatical error detection and establish

its first benchmark results. We show that conditioning models on error patterns enhances

grammatical error correction performance across three datasets from different genres.
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Sixth Chapter: Dialectal Text Normalization In this chapter, We introduce the task of

dialectal Arabic text normalization and present the first results using pretrained sequence-

to-sequence models. Furthermore, we demonstrate that conditioning these models on

the input’s dialect significantly improves performance. We present results on five Arabic

dialects: Beirut, Cairo, Doha, Rabat, and Tunis.

Seventh Chapter: Text Editing In the seventh chapter, we introduce the first Arabic

text editing model that frames NLG as a sequence tagging task. We demonstrate the

applicability of this approach on gender rewriting, grammatical error correction, and

dialectal text normalization. We show that this model outperforms autoregressive systems,

offering significantly faster inference times and making it more suitable for real-world,

practical NLG applications.

Eighth Chapter: Summary and Conclusions We conclude with this chapter, which

provides a high-level summary of the contributions in this dissertation and the main

general conclusions. We also discuss future research directions.

1.3 Contributions

The main contributions of this dissertation are:

1. We address the limitations of English-centricity and limited controllability in NLG

for morphologically rich languages by developing controlled NLG approaches

specifically designed for Arabic.

2. We focus on three key tasks: gender rewriting, grammatical error correction,

and dialectal text normalization. We introduce controlled NLG approaches that
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incorporate linguistic traits shaping Arabic writing, including grammatical gender,

error types, and dialect.

3. We introduce the novel task of Arabic gender rewriting and present a new dataset

to support its study. We develop multiple gender rewriting models and demonstrate

how gender rewriting can effectively reduce bias in machine translation systems.

4. We present the first results on Arabic grammatical error correction using pretrained

sequence-to-sequence models. We also introduce the task of multi-class Arabic

grammatical error detection and establish its first benchmark results. We show

that conditioning models on error patterns enhances grammatical error correction

performance across three datasets from different genres.

5. We present the first results on dialectal Arabic text normalization using pretrained

sequence-to-sequence models. We further demonstrate that conditioning these

models on the input’s dialect significantly improves performance.

6. We introduce the first Arabic text editing model that frames NLG as a sequence

tagging task. We demonstrate the applicability of this approach on gender rewrit-

ing, grammatical error correction, and dialectal text normalization. Our results

show that this model outperforms autoregressive systems, offering significantly

faster inference times and making it more suitable for real-world, practical NLG

applications.
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1.4 Publications

Most of the work in this dissertation was previously discussed in the following peer-

reviewed conference articles. In the chapters that follow, we elaborate and extend the

work presented in these papers:

1. Bashar Alhafni, Sarah Al-Towaity, Ziyad Fawzy, Fatema Nassar, Fadhl Eryani,

Houda Bouamor, and Nizar Habash. 2024. Exploiting dialect identification in au-

tomatic dialectal text normalization. In Proceedings of The Second Arabic Natural

Language Processing Conference, pages 42–54, Bangkok, Thailand. Association

for Computational Linguistics.

2. Bashar Alhafni, Go Inoue, Christian Khairallah, and Nizar Habash. 2023. Ad-

vancements in Arabic grammatical error detection and correction: An empirical

investigation. In Proceedings of the 2023 Conference on Empirical Methods in

Natural Language Processing, pages 6430–6448, Singapore. Association for

Computational Linguistics.

3. Bashar Alhafni, Ossama Obeid, and Nizar Habash. 2023. The user-aware Ara-

bic gender rewriter. In Proceedings of the First Workshop on Gender-Inclusive

Translation Technologies, pages 3–11, Tampere, Finland. European Association

for Machine Translation.

4. Bashar Alhafni, Nizar Habash, and Houda Bouamor. 2022. User-centric gender

rewriting. In Proceedings of the 2022 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pages 618–631, Seattle, United States. Association for Computational Linguistics.

https://aclanthology.org/2024.arabicnlp-1.4/
https://aclanthology.org/2024.arabicnlp-1.4/
https://aclanthology.org/2023.emnlp-main.396/
https://aclanthology.org/2023.emnlp-main.396/
https://aclanthology.org/2023.emnlp-main.396/
https://aclanthology.org/2023.gitt-1.1/
https://aclanthology.org/2023.gitt-1.1/
https://aclanthology.org/2022.naacl-main.46/
https://aclanthology.org/2022.naacl-main.46/


9
5. Bashar Alhafni, Nizar Habash, and Houda Bouamor. 2022. The Arabic parallel

gender corpus 2.0: Extensions and analyses. In Proceedings of the Thirteenth

Language Resources and Evaluation Conference, pages 1870–1884, Marseille,

France. European Language Resources Association.

6. Bashar Alhafni, Nizar Habash, Houda Bouamor, Ossama Obeid, Sultan Alrowili,

Daliyah AlZeer, Kawla Mohmad Shnqiti, Ahmed Elbakry, Muhammad ElNokrashy,

Mohamed Gabr, Abderrahmane Issam, Abdelrahim Qaddoumi, Vijay Shanker, and

Mahmoud Zyate. 2022. The shared task on gender rewriting. In Proceedings of the

Seventh Arabic Natural Language Processing Workshop (WANLP), pages 98–107,

Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Lin-

guistics.

7. Bashar Alhafni, Nizar Habash, and Houda Bouamor. 2020. Gender-aware

reinflection using linguistically enhanced neural models. In Proceedings of the

Second Workshop on Gender Bias in Natural Language Processing, pages 139–150,

Barcelona, Spain (Online). Association for Computational Linguistics.

The following preprint is also discussed:

8. Bashar Alhafni and Nizar Habash. 2025. Enhancing Text Editing for Grammatical

Error Correction: Arabic as a Case Study. arXiv preprint arXiv:2503.00985

https://aclanthology.org/2022.lrec-1.199/
https://aclanthology.org/2022.lrec-1.199/
https://aclanthology.org/2022.wanlp-1.10/
https://aclanthology.org/2020.gebnlp-1.12/
https://aclanthology.org/2020.gebnlp-1.12/
https://arxiv.org/abs/2503.00985
https://arxiv.org/abs/2503.00985
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Chapter 2

Arabic Linguistic Background

In this chapter, we present key linguistic background on Arabic relevant to this disser-

tation. Rather than providing a comprehensive overview of the language, our goal is to

highlight essential linguistic background that contextualize and motivate our work. We

begin with an overview of Arabic and its dialects, followed by a discussion of its rich

morphological system. We then discuss Arabic orthography, and the implications of the

lack of standardized orthography in dialectal Arabic.

2.1 Arabic and its Dialects

Arabic, a Semitic language, exists along a spectrum of linguistic forms, including Clas-

sical Arabic (CA), Modern Standard Arabic (MSA), and Dialectal Arabic (DA). CA is

primarily used in religious and classical literary texts, while MSA serves as the standard-

ized form of the language, used in formal media, official communication, culture, and

education. In contrast, DA consists of various spoken dialects across the Arab world

that lack standardized orthographies but have become increasingly common in written

communication, particularly on social media.
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Despite representing the formal form of Arabic, MSA is not spoken in daily ex-

changes, and it is not considered the native language of Arabic speakers. Instead, DA

is the primary medium of daily communication. A typical Arabic speaker acquires

native proficiency in one of the Arabic dialects and learns to read and write in MSA

through formal education (Mohit et al., 2014a). As a result, when writing in MSA,

speakers frequently incorporate elements from their dialects, leading to code-mixing at

the phonological, morphological, and lexical levels (Habash et al., 2008).

Figure 2.1: The distribution of the different Arabic dialects over the Arab World and
surrounding areas (Wikipedia, 2011).

Arabic dialects vary widely, with geographical location being the primary distinguish-

ing factor. Figure 2.1 presents the distribution of dialects across the Arab world. The

major dialectal groups are typically classified as follows (Habash, 2010):

• Egyptian: Spoken in Egypt and Sudan, including Nile Valley dialects.

• Levantine: Includes dialects of Lebanon, Syria, Jordan, and Palestine.

• Gulf Arabic: Encompasses dialects spoken in Kuwait, the UAE, Bahrain, and
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Qatar. Saudi Arabia is generally included, though it has significant subdialectal

variation, and Omani Arabic is sometimes grouped here.

• North African (Maghrebi): Covers the dialects of Morocco, Algeria, Tunisia, and

Mauritania, with Libyan Arabic sometimes included.

• Iraqi Arabic: Shares features with both Levantine and Gulf dialects.

• Yemeni Arabic: Often classified as a distinct dialect group.

Additionally, within each of these regional categories, substantial variation exists at the

village, town, and city levels, further enriching the linguistic diversity of the Arabic-

speaking world.

Despite their similarities, DA and MSA have many differences that prevent MSA

tools from being effectively utilized for dialectal text. Arabic dialects diverge from MSA

and from each other at the phonological, lexical, and morphological levels (Watson, 2007).

Phonologically, for instance, the MSA alveolar affricate h
.

/j/ is realized differently across

dialects: as /g/ in Egyptian, as /ž/ in Levantine, and as /y/ in Gulf Arabic. Consequently,

the word …J
⌦

‘
g

.
jmyl1, meaning ‘handsome’, is pronounced as /jamĪl/ in MSA, /gamĪl/ in

Egyptian, /žamĪl/ in Levantine, and /yamĪl/ in Gulf Arabic. Morphologically, DA also

differs considerably from MSA. For example, the MSA future proclitic /sa+/ (spelled

+Ä s+) appears in Egyptian Arabic as /Ha+/ (+h) or /ha+/ (+ Ë), with both variants

occurring without a fixed pattern. Lexically, the differences are even more pronounced.

The following are a few examples: in Egyptian Å�
.
bas ‘only’, ⇣

Ë

 
Q

�
⌦

K
.

Q£ tarabayza~ ‘table’,

⇣
H @Q” mirAt ‘wife [of]’, and »  X dawl ‘these’, correspond to the MSA words °

⇣

Æ

 

Ø faqaT,
⇣

ÈÀ A£ TAwila~, ⇣

Èk
.


 

P zawja~, and Z B

�

ÒÎ haŵlÂ, respectively (Habash et al., 2012a).

Although MSA follows a well-defined standard orthography, Arabic dialects lack

such standardization, leading to significant variation in how DA text is written (§2.3).
1All Arabic transliterations follow the Habash-Soudi-Buckwalter (HSB) transliteration scheme (Habash

et al., 2007).
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These inconsistencies introduce noise, increase sparsity, and amplify ambiguity in written

DA content. Additionally, since most written DA appears in user-generated content on

social media, it is further influenced by slang, informal spelling, and frequent errors,

making it even more inconsistent and challenging for Arabic NLP systems.

Complicating matters further, annotated DA data remains scarce, making it difficult

to develop robust computational models. In this dissertation, we address these challenges

by presenting NLG models for both MSA and DA, aiming to improve text generation

across different forms of Arabic.

2.2 Arabic Morphology

Morphology studies the internal structure of words, focusing on how their components

interact and shape their semantic and syntactic behaviors. Arabic has a rich morphological

system that inflects for different combinations of morphological features such as gender,

number, person, case, state, aspect, mood and voice, in addition to various attachable

clitics such as prepositions, particles, and pronouns (Habash, 2010). This results in a high

number of word inflections, significantly expanding the vocabulary space. For instance,

while the total number of words in a large MSA corpus is 20% lower than in its English

parallel (a morphologically poor language), the number of unique word types in MSA is

nearly double that of English (Kholy and Habash, 2010).

In addition to its morphological richness, Arabic (including both MSA and DA) ex-

hibits a high degree of ambiguity, primarily due to the multiple possible interpretations of

the same words. This ambiguity is further exacerbated by Arabic’s optional diacritization

system. One consequence of this high ambiguity is that, on average, an Arabic word has

approximately 12 different out-of-context morphological analyses (Habash, 2010). These



14
two challenges, morphological richness and ambiguity, are central to why Arabic poses

difficulties for NLP: the extensive range of word forms increases data sparsity, while the

high level of ambiguity complicates disambiguation.

To address these challenges, various morphological modeling approaches have been

developed. One of the earliest solutions is the use of morphological analyzers, also known

as morphological dictionaries, which enumerate all possible inflected forms of words

in the language (Buckwalter, 2002; Graff et al., 2009). A well-designed morphological

analyzer should comprehensively cover all inflected forms of a given lemma (richness)

and return all possible analyses of a surface word (ambiguity), with the most appropriate

analysis selected through morphological disambiguation. Beyond dictionaries, machine

learning-based morphological taggers and disambiguators (Pasha et al., 2014b; Abdelali

et al., 2016) have been developed to automate this process, followed by more advanced

neural morphological models (Zalmout and Habash, 2019; Zalmout, 2020; Inoue et al.,

2022).

In this dissertation, we leverage various morphological analysis and disambiguation

resources to introduce control in our NLG models. These resources range from traditional

morphological analyzers to more advanced neural-based morphological taggers and

disambiguators, enabling more precise and context-aware text generation.

2.3 Arabic Orthography

Orthography deals with the written form of a language, specifying how its sounds are

mapped to a particular script. In the case of Arabic, MSA serves as the primary written

form, with a well-defined orthographic system. However, despite its standardization,

written MSA suffers many orthographic inconsistencies even in professionally written
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news articles (Buckwalter, 2004a). These inconsistencies are particularly relevant to

grammatical error correction, which we explore in greater detail in Chapter 5.

Beyond these inconsistencies, Arabic orthography allows the use of optional diacritics.

Diacritics in Arabic primarily convey phonological information that complements the

consonant-based Abjad script. While Arabic has many diacritics, the basic set used in

most MSA contexts consists of nine symbol: vowel diacritics (Fatha
↵

, Damma
�

, Kasra

↵
) indicate short vowels; nunation diacritics (

◆

,


,
◆
) indicate a short vowel followed

by /n/; the gemination diacritic, Shadda
✏

, indicates doubling of the consonant letter it

follows; the Sukun
�

(silence) diacritic indicates that no vowel is present; and finally,

the special elongation diacritic
⌫

(aka Dagger Alif) indicates a long /ā/ vowel. In MSA

written text, diacritics are usually omitted, leaving readers to infer the meaning of certain

words based on the context (Habash, 2010). This leads to ambiguity, as in the case of the

verb ⇣
I

 

Jª knt, which can be read as kuntu ‘I was’, kunta ‘You [masculine] were’, or kunti

‘You [feminine] were’. While this allows the same text to be interpreted differently based

on the context, which can be beneficial in text generation, it poses major challenges for

disambiguation and detection systems, which must account for multiple possible readings

of the same word or phrase.

Furthermore, orthography is much more challenging in DA compared to MSA. While

MSA has a well-defined standard orthography, Arabic dialects do not. When speakers

write in DA, they often do so in a way that reflects either the phonology or the etymology

of the words. As a result, apart from unintentional typographical errors, no spelling of a

dialectal word can be deemed truly “incorrect”. This phenomenon, known as spontaneous

orthography (Eskander et al., 2013). For instance, the word for ‘small [feminine singular]’

in the Beirut dialect, /zKi:ri/, can be written in a range of spontaneous Arabic spellings,

some of which highlighting its phonology and others its etymological connections to
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MSA ⇣

Ë
Q

�
⌦

 
™ì S�yr~ /sQaKi:ra[t]/. These include: ¯

⌦

Q
�
⌦

 

´
 

P z�yry, Ë
Q

�
⌦

 

´
 

P z�yrh, ⇣

Ë
Q

�
⌦

 

´
 

P z�yr~,

¯

⌦

Q
�
⌦

 
™ì S�yry, Ë

Q
�
⌦

 
™ì S�yrh, and ⇣

Ë
Q

�
⌦

 
™ì S�yr~. This makes DA particularly challenging

for many NLP tasks. To address the lack of standardized orthography for DA, (Habash

et al., 2012a) proposed CODA, a Conventional Orthography for Dialectal Arabic. Apply-

ing CODA to DA text reduces sparsity and noise, which can lead to better modeling. We

discuss CODA in more detail in Chapter 6. In this dissertation, we introduce DA text

normalization models that normalizes DA into the CODA convention.



17

Chapter 3

Natural Language Generation

Background

Automatic text generation has been a longstanding goal in computer science, evolving

from early rule-based systems to modern neural approaches. This chapter provides an

overview of NLG methodologies, covering rule-based, statistical, and neural models,

along with applications and architectures used in text generation. We then introduce

controlled NLG, discussing different techniques for guiding text generation. Finally, we

summarize the NLG tasks explored in this dissertation.

3.1 Natural Language Generation

Natural language generation (NLG) refers to any task involving the production of text,

such as translation, summarization, or dialogue generation. NLG is inherently complex,

requiring decisions about what content to include, how to structure it, and how to express

it coherently. This section provides an overview of key NLG approaches.



18

3.1.1 A Short History of Natural Language Generation

Rule-based NLG: Early NLG systems relied on template- and grammar-based ap-

proaches, which were highly structured and consisted of multiple components responsible

for different stages of text generation. These included content determination to select

relevant information, document structuring to arrange it coherently, aggregation to merge

similar sentences, lexical choice to ensure precise and natural wording, and realization

to generate the final text (Reiter and Dale, 1997). Such approaches were often rigid,

requiring extensive manual effort to design templates and domain-specific rules.

Statistical NLG: To overcome the limitations of rule-based systems, NLG shifted

toward statistical methods, enabling more flexible, data-driven text generation. This

transition introduced statistical language modeling, which assigns probabilities to se-

quences of words. Formally, given a sequence of words w1, w2, ..., wn, a language model

estimates the likelihood P (w1, w2, ..., wn). An ideal model assigns high probability to

natural-sounding text and low probability to incoherent sequences. Most language models

assume that the probability of a word is dependent only on the words preceding it. By

applying the chain rule of probability, the likelihood of a sentence can be decomposed as

follows:

P (w1, w2, ..wn) = P (w1)P (w2|w1)P (w3|w1, w2)...P (wn|w1, ..., wn�1)

A widely used form of statistical language modeling is the n-gram model. Instead of

trying to estimate the probability of a word given all preceding words, n-gram models

make the Markov assumption that the probability of a word depends only on the previous
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n-1 words. For example, a 3-gram language model (trigram) estimates:

P (wi|w1, ..wi�1) ⇡ P (wi|wi�2, wi�1)

An n-gram model is constructed from a corpus of text by simply counting how many

times each word in the text is preceded by each possible n-gram. This makes n-gram

models easier to train than grammar-based approaches, which require manually labeled

training data. Due to their simplicity and efficiency, we use n-gram models in this

dissertation for various NLG tasks.

However, n-gram language models have several limitations. First, they suffer from

data sparsity, assigning zero probability to unseen (n-gram, word) pairs, which requires

smoothing techniques. Second, their computational cost also grows exponentially with

n, making long-range dependencies difficult to capture. In practice, most models use n

between 1 and 5, which is insufficient for maintaining coherence. Third, they struggle

with out-of-vocabulary (OOV) words, as they can only generate words encountered during

training. Neural language models, described next, address many of these limitations.

Neural NLG: Neural network-based language models replace traditional statistical

models with a learned function (the neural network) that predicts the likelihood of a

word sequence. Unlike n-gram models, neural models can assign nonzero probabilities

to unseen sequences and capture longer dependencies. State-of-the-art neural language

models can process sequences thousands of words long.

One of the key advances in neural language modeling was the transition from operating

on sequences of discrete words to operating on sequences of continuous vector representa-

tions. Instead of treating words as independent symbols, modern neural models represent

each word wt as a dense embedding yt. Early neural language models used pretrained
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word embeddings, such as word2vec (Mikolov et al., 2013) and GloVe (Pennington et al.,

2014), where embeddings were learned separately from the language model. In contrast,

modern neural language models jointly optimize embeddings along with the rest of the

network, treating the embedding matrix as a trainable parameter.

At each time time step t, a neural language model predicts the next word based on the

preceding words, similar to an n-gram model but without fixed context limitations. Given

a sequence of words w1, w2, ..., wn, the model estimates a probability distribution over

all possible next words:

P (wt|w1, ..., wt�1) =
exp(f✓(w1, ..., wt�1)i)P
j exp(f✓(w1, ..., wt�1)j)

where f✓ is a neural network parameterized by ✓, which takes the previous words as input

and generates a score for each word in the vocabulary. These scores are then normalized

using the softmax function, producing a probability distribution. The model selects the

next word using a decoding strategy, such as greedy decoding or beam search.

In many language modeling applications, the model is conditioned on an external input in

addition to the preceding words. This means it can generate text not only by continuing

a sequence but also by incorporating information from a prompt, structured data, or

another input source. Given an input sentence X = x1, x2, ..., xm and a target sentence

Y = y1, y2, ..., yn, a conditional neural language model estimates:

P (Y |X) =
nY

t=1

P (yt|y1, ..., yt�1, X)

This modeling paradigm, also known as an encoder-decoder or sequence-to-sequence

(Seq2Seq), is widely used in machine translation, text summarization, and dialogue

generation. We adopt Seq2Seq models for all NLG tasks in this dissertation.
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3.1.2 Types of Natural Language Generation

NLG can be categorized into several types based on the nature of their inputs. Following

Li et al. (2021), we group NLG applications into the following categories:

• Unconditional Generation: This type of generation does not rely on any explicit

input beyond an initial prompt or starting token. As discussed earlier, unconditional

language models estimate the probability of a word sequence without external

conditioning. Common applications include story generation (Ma et al., 2024) and

open-ended text continuation (Radford et al., 2019).

• Conditional Generation: In conditional generation, the model generates text

based on a given input sequence. As covered earlier, this setup is widely used in

machine translation (Sutskever et al., 2014), summarization (Rush et al., 2015),

and dialogue generation (Li et al., 2016).

• Attributed-based Generation: Here, the model is conditioned on both an input

sequence and a set of explicit attributes, such as sentiment, style, or author traits.

Applications include style transfer (Keskar et al., 2019; Krause et al., 2021) and

personalized text generation (Alhafni et al., 2024c; Zhang et al., 2024).

• Data-to-Text Generation: This type of generation converts structured data such as

tables (Parikh et al., 2020), knowledge graphs (Wiseman et al., 2017), or database

entries (Novikova et al., 2017) into natural language text.

• Multimedia-to-Text Generation: In multimedia-to-text generation, the model

generates text based on non-textual inputs such as images, videos, or audio. Appli-

cations include image captioning (Chen et al., 2015), video captioning (Long et al.,

2018), and speech recognition (Yadav and Sitaram, 2022).

This dissertation focuses on unconditional, conditional, and attribute-based NLG models.
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3.1.3 Neural Architectures for Natural Language Generation

Given the sequential nature of language, early neural text generation models primarily

relied on recurrent neural networks (RNNs), such as long short-term memory (LSTM)

networks (Hochreiter and Schmidhuber, 1997) and gated recurrent units (GRUs) (Cho

et al., 2014). Although less common, convolutional neural networks (CNNs) have also

been explored for text generation (Kalchbrenner et al., 2017). Conditional generation

models typically adopt an encoder-decoder or Seq2Seq architecture (Sutskever et al.,

2014), where an encoder processes the input sequence and a decoder generates the

output. The introduction of the attention mechanism between the encoder and decoder

significantly improved performance in machine translation (Bahdanau et al., 2015) and

was soon adopted across various NLG tasks.

More recently, self-attention-based architectures, particularly the Transformer (Vaswani

et al., 2017), have become the dominant paradigm for state-of-the-art NLG. Transform-

ers offer several advantages over their recurrent predecessors, the most notable being

parallelization–operations are applied to all tokens in a sequence simultaneously, rather

than sequentially as in RNNs. This drastically reduces training time and makes com-

putation independent of sequence length. Additionally, Transformers are far better at

capturing long-range dependencies, enabling them to establish relationships between

words and phrases that may be far apart in a text. These advantages have driven the

scaling of Transformers and their widespread adoption in large language models (LLMs),

which are now at the forefront of NLG research and applications.

Most neural text generation models are trained using backpropagation to maximize the

log-likelihood of predicting the next word given the preceding words: P (wt|w1, .., wt�1).

A major breakthrough in NLG has been self-supervised pretraining, where models learn
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from large amounts of raw text without requiring labeled data. This approach has led to

significant improvements across various NLP tasks (Peters et al., 2018; Devlin et al., 2019;

Liu et al., 2019; Yang et al., 2019b) and is now the de facto learning paradigm: models are

first pretrained on massive text corpora and then fine-tuned on specific downstream tasks.

Modern pretrained models are predominantly based on the Transformer architecture. For

text generation, pretraining strategies typically fall into two categories: decoder-only

language models, such as GPTs (Radford et al., 2019; Brown et al., 2020; OpenAI et al.,

2024), which predict text autoregressively, and encoder-decoder (SeqSeq) models, such

as BART (Lewis et al., 2020; Liu et al., 2020c) and T5 (Raffel et al., 2020; Xue et al.,

2021), which learn to reconstruct corrupted text sequences. In this dissertation, we

leverage pretrained language models for all NLG tasks we study.

3.2 Controlled Natural Language Generation

Controlled NLG is the task of generating text that adheres to a given attribute or condition

while maintaining fluency and coherence. The controlled attribute can take various forms

depending on the application, ranging from text characteristics (such as sentiment, topic,

or keywords) to author-related traits (such as writing style, gender, or age). This approach,

often referred to as attribute-based generation, can be formalized as follows:

P (Y |X,A) =
nY

t=1

P (yt|y1, ..., yt�1, X,A)

where X is the input sequence, Y is the generated output, and A represents the condi-

tioning attribute. This paradigm also extends to unconditional generation, where text is

generated solely based on the specified attribute, modeled as: P (Y |A).

Controlled NLG methods fall into content control (hard control) and attribute control
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(soft control) (Liang et al., 2024). Content control explicitly constrains text structure

and word choice, enforcing strict linguistic rules (Hua and Wang, 2020; He, 2021; Yang

and Klein, 2021; Lin and Riedl, 2021; Lu et al., 2022; Liu et al., 2022; Chai et al., 2022;

Juseon-Do et al., 2024; Jie et al., 2024). In contrast, attribute control operates at a higher

level, influencing broad characteristics like sentiment (Keskar et al., 2019; Krause et al.,

2021), style (Trotta et al., 2022; Alhafni et al., 2024c; Zhang et al., 2024), or topic rather

than dictating specific words (Dathathri et al., 2020; Chan et al., 2022). Hard control

enforces predefined constraints, while soft control allows for greater flexibility, making it

particularly useful for stylistic adaptation and personalized generation.

Control can be integrated into text generation either during training or at inference.

Training-time approaches include retraining, where models are trained from scratch on

attribute-specific data (Keskar et al., 2019; He, 2021); fine-tuning (Zhang and Song, 2022;

Zhou et al., 2023b), which adapts pretrained models by incorporating control attributes;

and reinforcement learning (Upadhyay et al., 2022; Dai et al., 2024), which optimizes

model outputs using reward signals. At inference time, control mechanisms are applied

in real-time through prompt engineering (Lester et al., 2021; Li and Liang, 2021; Liu

et al., 2023), which guides output by modifying input prompts; latent space manipulation

(Subramani et al., 2022; Liu et al., 2024; Turner et al., 2024), which adjusts internal model

activations to influence text attributes; and decoding-time interventions (Dathathri et al.,

2020; Krause et al., 2021; Yang and Klein, 2021) which modify probability distributions

or impose constraints during generation.

In this dissertation, we explore attribute-controlled NLG by conditioning models on

linguistic attributes that influence Arabic writing, including grammatical gender, dialect,

and error patterns. These techniques enable fine-grained control in the NLG tasks we

explore, enhancing adaptability to diverse user preferences and linguistic contexts.
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3.3 Language Generation Tasks in this Dissertation

This dissertation explores three language generation tasks. A brief summary of each task

is provided here:

Arabic Gender Rewriting: We define gender rewriting as the task of generating

alternative versions of a sentence based on a given target user’s grammatical gender. This

task is particularly relevant for gender-marking, morphologically rich languages like

Arabic, where ensuring inclusivity in NLG applications requires generating outputs that

align with a user’s identity. To our knowledge, this is a novel task, with no prior work in

Arabic or any other language. In Chapter 4, we introduce the task, review related work,

and describe the datasets and models developed for it. The research presented in this

chapter is based on findings from Alhafni et al. (2020, 2022a,b,c, 2023b).

Grammatical Error Correction: Grammatical Error Correction (GEC) aims to correct

spelling and grammatical errors, making it valuable for educational applications and

writing assistance tools. In this dissertation, we focus on GEC for MSA and introduce

Arabic Grammatical Error Detection (GED) as a distinct task. Our findings demonstrate

that conditioning GEC models on GED predictions significantly enhances performance.

Chapter 5 presents the task, reviews related work, and details our contributions to Arabic

GEC. The research presented in this chapter is based on findings from Alhafni et al.

(2023a).

Dialectal Text Normalization: Text normalization involves mapping non-canonical

text to a standardized form, which is particularly crucial for Dialectal Arabic (DA) due

to its lack of standardized orthography (§2). Normalization plays a dual role: as an



26
upstream task, it mitigates data sparsity and variation to facilitate downstream NLP

applications; as a downstream task, it enhances text readability. In this dissertation, we

explore CODAfication, the task of normalizing DA text into the CODA convention. Our

results show that conditioning NLG models on the writer’s dialect improves performance.

Chapter 6 introduces CODA and the CODAfication task, detailing our contributions in

this space. The research presented in this chapter is based on findings from Alhafni et al.

(2024a).
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Chapter 4

Arabic Gender Rewriting

This chapter introduces the task of gender rewriting and presents the Arabic Parallel

Gender Corpus, a novel dataset designed for gender identification and rewriting in

contexts where one or two target users (first-person “I” and/or second-person “You”)

have independent grammatical gender preferences. We develop and evaluate various

gender rewriting systems, including a joint model and a multi-step approach, both

of which combine the strengths of rule-based and neural methods. Additionally, we

benchmark open-source and commercial LLMs to assess their performance on gender

rewriting. Our models establish a strong benchmark on the newly introduced corpus,

demonstrating their effectiveness. Furthermore, we showcase a practical application

of our gender rewriting systems by post-editing machine translation outputs, ensuring

they align with users’ grammatical gender preferences and reducing gender bias when

translating from English to Arabic. Additionally, we introduce a web-based gender

rewriting system that allows users to interact with our models seamlessly. Finally, we

share insights from organizing a shared task on Arabic gender rewriting, highlighting key

challenges and lessons learned.
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4.1 Introduction

The remarkable progress in NLP has raised expectations about user experience, par-

ticularly regarding gender identity representation. Gender stereotypes, both negative

and positive, are embedded in most of the world’s languages (Maass and Arcuri, 1996;

Menegatti and Rubini, 2017) and are further propagated and amplified by NLP sys-

tems (Sun et al., 2019). This not only degrades user experiences but also contributes

to representational harms (Blodgett et al., 2020). While human-generated data used

to train NLP systems is often considered the primary source of bias, merely balancing

or debiasing training data does not necessarily mitigate these biases. This is because

most NLP systems are designed to generate a single text output without accounting for

user-specific grammatical gender preferences. To address this, NLP systems should

integrate users’ grammatical gender preferences whenever available to ensure accurate

and inclusive text generation.

Ensuring user-aware gender representation becomes even more challenging in multi-

user contexts, where different users (first, second, and third persons) have independent

grammatical gender preferences. One example of this phenomenon is the machine

translation of the sentence I am a doctor and you are a nurse. While English uses gender

neutral terms leading to ambiguous gender references for the first and second persons

(I/doctor and you/nurse), some morphologically rich languages use gender-specific terms

for these two expressions. For instance, in Arabic, a gender-unaware single-output

machine translation from English often results in ⇣

È

 

ìQ‹ÿ
⇣

I

 

K

�

@ I
.

⌧
⌦

J
.
£ A

 

K

�

@ ÂnA Tbyb wÂnt

mmrD~ ‘I am a [male] doctor and you are a [female] nurse’, which is inappropriate for

female doctors and male nurses, respectively. Alternatively, user-aware personalized NLP

systems should be designed to produce outputs that are as gender-specific as the user
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information they have access to. Users information could be either explicitly embedded

as part of the input (e.g., ‘she is a doctor and he is a nurse’) or provided externally by

the users themselves. However, contextual complexity and the lack of gender-annotated

resources in morphologically rich languages make this task particularly challenging.

In this chapter, we define the task of gender rewriting as generating alternatives of

a given Arabic sentence to match different target user gender contexts: a male speaker

with a male listener, a female speaker with a male listener, a male speaker with a

female listener, and a female speaker with a female listener. The user-specified gender

preferences are treated as part of the input to guide the rewriting process. This requires

changing the grammatical gender (masculine or feminine) of certain words referring

to the users (speaker/first person and listener/second person). Formally, given an input

X that combines both the input Arabic sentence and the target gender preferences, and

a sequence of word-level gender labels G corresponding to the input Arabic sentence,

the goal is to generate a rewritten version Y that matches the user specified gender

preferences:

P (Y |X,G) =
nY

t=1

P (yt|y1, ..., yt�1, X,G)

To facilitate this task, we introduce the Arabic Parallel Gender Corpus, a new dataset

designed for gender identification and rewriting. We develop and benchmark various

gender rewriting systems on this corpus and demonstrate their effectiveness. Furthermore,

we show how these systems can be leveraged to mitigate gender bias in English-to-Arabic

machine translation. Finally, we introduce a web-based application that enables users to

interact with our gender rewriting models and share insights gained from organizing a

shared task on gender rewriting.
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4.2 Background and Related Work

Several approaches have been proposed to mitigate gender bias in various NLP tasks

(Stanczak and Augenstein, 2021) including machine translation (Rabinovich et al., 2017;

Elaraby et al., 2018; Vanmassenhove et al., 2018; Escudé Font and Costa-jussà, 2019;

Stanovsky et al., 2019; Costa-jussà and de Jorge, 2020; Gonen and Webster, 2020;

Saunders and Byrne, 2020; Bentivogli et al., 2020; Saunders et al., 2020; Stafanovičs

et al., 2020; Saunders et al., 2021; Savoldi et al., 2021; Ciora et al., 2021; Savoldi et al.,

2023, 2024; Sánchez et al., 2024; Garg et al., 2024), dialogue systems (Cercas Curry

et al., 2020; Dinan et al., 2020a; Liu et al., 2020a,b; Sheng et al., 2021b,a), language

modeling (Lu et al., 2018; Bordia and Bowman, 2019; Sheng et al., 2019; Vig et al.,

2020; Kaneko et al., 2022; Kotek et al., 2023; Levy et al., 2024), co-reference resolution

(Rudinger et al., 2018; Zhao et al., 2018a; Cao and Daumé, 2021), and named entity

recognition (Mehrabi et al., 2019; Cimitan et al., 2024).

Approaches to mitigating gender bias include debiasing word embeddings (contextu-

alized or non-contextualized) before using them in downstream tasks (Bolukbasi et al.,

2016; Zhao et al., 2018b; Gonen and Goldberg, 2019; Manzini et al., 2019; Zhao et al.,

2020; Lauscher et al., 2020; Katsarou et al., 2022), classifying gender bias along multiple

dimensions (Dinan et al., 2020b), adding additional information to the input to enable

models to capture gender information correctly (Vanmassenhove et al., 2018; Moryossef

et al., 2019; Stafanovičs et al., 2020; Saunders et al., 2020; Basta et al., 2020), or training

models on gender-balanced corpora created through counterfactual data augmentation

techniques (Madaan et al., 2018; Park et al., 2018; Lu et al., 2018; Maudslay et al., 2019;

Zmigrod et al., 2019; Emami et al., 2019; Costa-jussà and de Jorge, 2020; Bartl et al.,

2020; de Vassimon Manela et al., 2021; Sen et al., 2021). In terms of rewriting, Van-
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massenhove et al. (2021) and Sun et al. (2021) presented rule-based and neural rewriting

models to generate gender-neutral sentences. Garg et al. (2024) used LLMs to machine

translation outputs to generate all possible gender alternatives.

Most existing work focuses on English and may not generalize well to morpho-

logically rich languages. Nevertheless, there have been recent studies that explored

the gender bias problem in languages other than English. Zhao et al. (2020) studied

gender bias which is exhibited by multilingual embeddings in four languages (English,

German, French, and Spanish) and demonstrated that such bias can impact cross-lingual

transfer learning tasks. Zmigrod et al. (2019) used a counterfactual data augmentation

approach and developed a generative model to convert between masculine and feminine

sentences in four languages (French, Hebrew, Italian, and Spanish). Vanmassenhove

and Monti (2021) introduced an English-Italian dataset where the English sentences are

gender annotated at the word-level and paired with multiple gender alternative Italian

translations when needed. Bentivogli et al. (2020) proposed MuST-SHE, a multilingual

benchmark for analyzing gender bias in machine translation and speech translation, con-

taining English-Spanish/French/Italian spoken data from TED talks. Nozza et al. (2021)

introduced a benchmark dataset of manually crafted sentence templates to assess gender-

stereotyped completions across six languages: English, Italian, French, Portuguese,

Romanian, and Spanish. Muller et al. (2023) developed an automated pipeline to quantify

gender representation bias in large-scale multilingual datasets for machine translation

across 55 languages. Savoldi et al. (2025) introduced mGeNTe, a multilingual extension

of the GeNTe corpus (Piergentili et al., 2023), which provides manually curated parallel

data for gender neutralization in English-Italian, English-Spanish, and English-German.

For Arabic, Habash et al. (2019) introduced the first version of the Arabic Parallel

Gender Corpus, a gender-annotated parallel dataset of first-person singular sentences.



32
Each sentence was labeled according to the speaker’s grammatical gender as feminine,

masculine, or ambiguous, with corresponding gendered rewrites provided for the mascu-

line and feminine sentences. They also developed a two-step gender rewriting system:

a feature-based classifier for gender identification and a character-level seq2seq model

for rewriting. Their system was applied to machine translation post-editing to produce

gender-specific translations.

Our work extends the Arabic Parallel Gender Corpus by incorporating contexts that

involve both first and second grammatical persons, covering singular, dual, and plural

constructions, and expanding the dataset to six times its original size. In this chapter, we

detail the creation process of this extended corpus and introduce our gender rewriting

systems.

Arabic Grammatical Gender

Arabic has a rich and complex morphological system (§2) that inflects for various

morphological features, including gender, number, person, case, state, aspect, mood, and

voice, as well as several attachable clitics such as prepositions, particles, and pronouns.

Arabic nouns, adjectives, and verbs inflect for gender: masculine (M) and feminine (F),

and for number: singular (S), dual (D) and plural (P). Changing the grammatical gender

of Arabic words involves either changing the base word, altering pronominal enclitics

that are attached to the base word, or a combination of both. A base word in Arabic refers

to the stem along with its attachable affixes (prefixes, suffixes, circumfixes). Changing

the base word gender requires either a suffix change, a pattern change, or a lexical change

as shown in Table 4.1. Arabic also has clitics that attach to the stem after affixes. A clitic

is a morpheme that has the syntactic characteristics of a word but shows evidence of

being phonologically bound to another word. In this respect, a clitic is distinctly different



33
Paired Gender Alternatives Rewrite Type

ഏ೦घأ Âmyr (NOUN.MS) 
prince

Âmyrħ (NOUN.FS) أഏ೦घة
princess

Suffix Change (a)

ष፬ፚأ ÂHmr (ADJ.MS) 
red

 ष፬ፚ HmrA’ (ADJ.FS)اء
red

Pattern Change (b)

 Âx (NOUN.MS) أخ
brother

Âxt (NOUN.FS) أࢡ߾
sister

Lexical Change (c)

ᐻ᏾+ഏ೦घأ Âmyr+km (NOUN.MS+PRON.2MP)
your (MP) prince

झ࣢+ഏ೦घأ Âmyr+kn (NOUN.MS+PRON.2FP)
your (FP) prince

Enclitic Change (d)

 ÂmrA’ (NOUN.MP) أఘఊاء
princes

 ÂmyrAt (NOUN.FP) أഏ೦घات
princesses

Pattern Change +
Suffix Change (e)

ᐻ᏾+ഏ೦घأ Âmyr+km (NOUN.MS+PRON.2MP)
your (MP) prince

झࣴᕌ+ᕌࠧഏ೦घأ Âmyrt+kn (NOUN.FS+PRON.2FP)
your (FP) princess

Suffix Change    +
Enclitic Change (f)

कاء+ࣈఘఊأ ÂmrA’+hm (NOUN.MP+PRON.3MP) 
their (MP) princes

झات+ࣈഏ೦घأ ÂmyrAt+hn (NOUN.FP+PRON.3FP)  
their (FP) princesses

Pattern Change +
Suffix Change           +
Enclitic Change

(g)

Table 4.1: Examples of the changes needed to generate gender alternative forms of
gender-specific words in Arabic.

from an affix, which is phonologically and syntactically part of the word. Proclitics are

clitics that precede the word (like a prefix), whereas enclitics are clitics that follow the

word (like a suffix). Pronominal enclitics are pronouns that cliticize to previous words

(Table 4.1(d)). It is worth noting that multiple affixes and clitics can appear in a single

word in Arabic and changing the grammatical gender of such words requires changing

the genders of both the base word and its clitics (Table 4.1(f-g)).

4.3 The Arabic Parallel Gender Corpus

The first version of the Arabic Parallel Gender Corpus (APGC v1.0) was introduced by

Habash et al. (2019). It consists of gender-annotated and rewritten first-person singular

Arabic sentences, sourced from a subset of the English-Arabic OpenSubtitles 2018

dataset (Lison and Tiedemann, 2016). Each sentence is labeled based on the grammatical

gender of its singular speaker as F (feminine), M (masculine), or B (invariant/ambiguous).
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For the M and F sentences, they introduced their parallel opposite gender forms. In this

dissertation, we expand APGC v1.0 and introduce APGC v2.0 by adding second person

targets as well as increasing the total number of sentences over 6.5 times, reaching over

590K words. The new corpus consists of multiple parallel components: four combinations

of first- and second-person grammatical gender (masculine and feminine), English source

sentences, and English-to-Arabic machine translation outputs. We describe the selection

process and annotation guidelines for APGC v2.0 in (§4.3.1, §4.3.2, §4.3.3) and provide

an overview and analysis of the corpus in (§4.3.4).

4.3.1 Corpus Selection

As in Habash et al. (2019), we selected the original set of sentences from the English-

Arabic OpenSubtitles 2018 dataset (Lison and Tiedemann, 2016), which includes 29.8

million English-Arabic sentence pairs. We chose OpenSubtitles because it has parallel

sentences in English and because it is full of conversational (first and second person)

texts in MSA. We extracted all the pairs that include first or second person pronouns on

the English side: I, me, my, mine, myself, and you, your, yours, yourself. This selection

process identified 13.4 million pairs: 2.8 million (21.1%) include first and second person

pronouns, 5.7 million (42.5%) include only first person pronouns, and 4.9 million (36.4%)

include only second person pronouns.

Out of this set, we randomly selected 52,000 English-Arabic pairs to be manually

annotated, while maintaining the original first and second person sentences proportions:

10,972 (21.1%) pairs contain first and second person pronouns on the English side, 22,100

(42.5%) pairs contain only first person pronouns on the English side, 18,928 (36.4%)

pairs contain only second person pronouns on the English side. To be consistent with

APGC v1.0’s preprocessing, we ran the Arabic sentences through MADAMIRA (Pasha
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et al., 2014b) to do white-space-and-punctuation tokenization and UTF-8 cleaning.

In addition to the above, we re-annotated all of the 11,240 sentences from APGC v1.0

to include second person references and match our extended guidelines completely. In

total, this resulted in 63,240 English-Arabic sentence pairs for the next annotation step.

4.3.2 Corpus Annotation

Four professional linguists (three females and one male), all of whom are native speakers

of Arabic, were hired through a linguistic annotation firm, to complete the task.

Gender Identification First, the annotators were asked to identify the genders of the

first and second person references in each sentence, then assign to each sentence a

two-letter label, where each letter refers to the gender of the first and second person

references, respectively. Each letter in the label can have one of three values: F (feminine),

M (masculine), or B (invariant/ambiguous). Therefore, each sentence will get a label

from one of the nine different label combinations: B, 1FB, 1MB, B2F, B2M, 1M2M,

1F2M, 1M2F, or 1F2F. Additionally, the annotators were asked to identify the dual and

plural gendered references. If present, the sub-label corresponding to the gender of the

first or second person reference would get an extra mark: “!” (e.g., BF!, M!B!, etc.).

Gender Rewriting In the case of an F or M sub-label, the annotators were asked to

copy the sentence and modify it to obtain the opposite gender forms. The modifications

are strictly limited to morphological reinflections and word substitutions as was done

in Habash et al. (2019). Therefore, the total number of words is maintained along with

a perfect alignment between each sentence and its parallel opposite gender forms. For

example, the sentence in Table 4.2(c) includes a first person gender reference and is
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English Arabic Label Rewrite Label Rewrite

I wanna thank you ºQ∫
⌘

É

�

@

 

‡

�

@ YK
⌦

P

�

@ B (a)

I’m so happy for you Ω g
.

�

@
 

·”

⇣

Ë YJ
⌦

™É A

 

K

�

@ 1FB 1MB Ω g
.

�

@
 

·” YJ
⌦

™É A

 

K

�

@ (c)

We were coming to see you Ω

⇣

JK
⌦

�

 QÀ
⇣

H A” X A

⇣

Ø
 

·m
⇢

 

' 1FB 1MB Ω

⇣

JK
⌦

�

 QÀ

 

‡ Ò” X A

⇣

Ø
 

·m
⇢

 

' (d)

Because I’m your big brother Q
�
⌦

J
.
∫À @ ºÒ

 

k

�

@ ˙

⌦

 

Ê

 

K

�

B 1MB 1FB ⇣

Ë
Q

�
⌦

J
.
∫À @ Ω

⇣

J

 

k

�

@ ˙

⌦

 

Ê

 

K

�

B (e)

We’re ready  

‡  Y™

⇣

JÇ”
 

·m
⇢

 

' 1MB 1FB ⇣
H @ Y™

⇣

JÇ”
 

·m
⇢

 

' (f)

I know, babe ˙

⌦

⇣

G
 

QK
⌦

 
Q´ AK

⌦
ΩÀ

 

X ’Œ´

�

@ B2F B2M ¯

⌦

 
QK

⌦

 
Q´ AK

⌦
ΩÀ

 

X ’Œ´

�

@ (g)

I respect you [plural]  
·∫”

Q
⇣

�g

�

@ A

 

K

�

@ B2F B2M ’∫”
Q

⇣

�g

�

@ A

 

K

�

@ (h)

I’m right here dad ˙

⌦

G

.

�

@ AK
⌦

A

 

JÎ A

 

K

�

@ B2M B2F ˙

⌦

◊

�

@ AK
⌦

A

 

JÎ A

 

K

�

@ (i)

I love you [plural] so much @
Q

�
⌦

⌘

Jª ’∫J
.
k

�

@ B2M B2F @
Q

�
⌦

⌘

Jª
 

·∫J
.
k

�

@ (j)

1M2M ¯

⌦

 
QK

⌦

 
Q´ AK

⌦

⇣

ÈK
⌦

A
 

™ À

 

≠

�

K A

 

g A

 

K

�

@ (n)

Baby, I’m so scaraspberry right now ¯

⌦

 
QK

⌦

 
Q´ AK

⌦

⇣

ÈK
⌦

A
 

™ À

⇣

È

 

Æ

�

K A

 

g A

 

K

�

@ 1F2M 1F2F ˙

⌦

⇣

G
 

QK
⌦

 
Q´ AK

⌦

⇣

ÈK
⌦

A
 

™ À

⇣

È

 

Æ

�

K A

 

g A

 

K

�

@ (o)

1M2F ˙

⌦

⇣

G
 

QK
⌦

 
Q´ AK

⌦

⇣

ÈK
⌦

A
 

™ À

 

≠

�

K A

 

g A

 

K

�

@ (p)

1F2F Ë A”

�

@ AK
⌦

Ω

⇣

K XÒ™K
.

⇣

Ë YJ
⌦

™É A

 

K

�

@ (q)

I’m glad you made it home, mom Ë A”

�

@ AK
⌦

Ω

⇣

K XÒ™K
.

YJ
⌦

™É A

 

K

�

@ 1M2F 1M2M Ë A

⇣

JK
.

�

@ AK
⌦

Ω

⇣

K XÒ™K
.

YJ
⌦

™É A

 

K

�

@ (r)

1F2M Ë A

⇣

JK
.

�

@ AK
⌦

Ω

⇣

K XÒ™K
.

⇣

Ë YJ
⌦

™É A

 

K

�

@ (s)

Table 4.2: Examples from the APGC v2.0 including the original sentence, its gender
label, its rewrite gender label, and its rewrite to the opposite grammatical gender where
appropriate. First person gendered words are in purple and second person gendered words
are in pink. The two-letter label specifies gender information of first person (first letter)
and second person (second letter). M is Masculine; F is Feminine; and B is invariant.

labeled by the annotators as 1FB, and therefore, the annotators would introduce its gender

cognate 1MB. If the sentence includes both first and second person gender references

(1M2M, 1F2M, 1M2F, or 1F2F), the annotators would then introduce all its possible

gender cognates, as in Table 4.2(n-s) for instance.

In the vast majority of cases, the opposite gender forms of most words end up sharing

the same lemma (reinflection), e.g., YÀ @ wAld ‘parent/father [M]’ and ⇣

Ë YÀ @ wAld~

‘parent/mother [F]’. However, there are cases where gender-specific words have to be

mapped to different lemmas, resulting in a lexical change. For instance, ˙

⌦

G

.

�

@ Âby ‘my

dad’ and ˙

⌦

◊

�

@ Âmy ‘my mom’ (Table 4.2(i)), or ºÒ

 

k

�

@ Âxwk ‘your brother’ and Ω

⇣

J

 

k

�

@ Âxtk
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‘your sister’ (Table 4.2(e)). Furthermore, the annotators were instructed to avoid any

heterocentric assumptions during the annotation. For example, the sentence ˙

⌦

k

.


 

P
⇣

I

 

K

�

@

Ânt zwjy ‘you are my husband’ is labeled as B2M (ambiguous first person, masculine

second person) and not 1F2M (feminine first person, masculine second person). The

annotators were also instructed to treat all proper names as gender-ambiguous (B), even

when they have strong gender-specific associations, and as such are not rewritten. Finally,

the annotators were asked to flag bad translations and malformed sentences.

4.3.3 Automatic Word-Level Annotations

Since the annotators were only allowed to perform grammatical inflections and word

substitutions, all sentences and their parallels are perfectly aligned at the word level. This

allowed us to obtain word-level gender annotations automatically as a byproduct. Since

gender information could be expressed at different parts of Arabic words (§4.2), we mark

the genders of both the base words and their pronominal enclitics. To do this, we look

at the original sentence and all of its parallel forms. If the word is the same across all

the parallel versions of a sentence, then we label it as B. Otherwise, we check if the

word ends with a gender marking pronominal enclitic, we label the gender of the enclitic

based on predefined rules as 1F, 1M, 2F, or 2M. If the gendered word does not end with a

gender-marking enclitic, then we label the enclitic as B. Once the enclitic is labeled, we

compare the base form of the word across its parallel forms. If the base form is the same,

we label it as B. Otherwise, we assign the base form the same label as its sentence-level

gender label. This results in 25 possible word-level gender labels (e.g., B+1F, 1F+2M).

For example, in Table 4.3(d-g), the word A

 

K

�

@ Âna ‘I’ is the same across all four

parallel versions of the sentence and thus labeled as B. In contrast, the words ⇣

Ë YJ
⌦

™É

s&yd~ ‘happy [F]’ and YJ
⌦

™É s&yd ‘happy [M]’ change across the parallel versions. By
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English Arabic Label

I want to talk to you Ω™”
⌘

H Ym
⇢

⇣

'

�

@

 

‡

�

@ YK
⌦

P

�

@ B (a)
B B B B

I am going to my office

˙

⌦

Ê

.

⇣

J∫÷œ

⇣

ÈJ
.
Î @

 

X A

 

K

�

@ FB (b)

B 1F+B B
˙

⌦

Ê

.

⇣

J∫÷œ I
.

Î @

 

X A

 

K

�

@ MB (c)

B 1M+B B

I am glad to know you [plural]

’∫

⇣

J

 

ØQ™÷fl.

⇣

Ë YJ
⌦

™É A

 

K

�

@ FM (d)
B+2M 1F+B B

’∫

⇣

J

 

ØQ™÷fl. YJ
⌦

™É A

 

K

�

@ MM (e)
B+2M 1F+B B

 
·∫

⇣

J

 

ØQ™÷fl. YJ
⌦

™É A

 

K

�

@ MF (f)
B+2F 1M+B B

 
·∫

⇣

J

 

ØQ™÷fl.

⇣

Ë YJ
⌦

™É A

 

K

�

@ FF (g)
B+2F 1F+B B

Table 4.3: Examples of word-level gender annotation. First person gendered words are in
purple and second person gendered words are in pink.

looking at the sentence-level labels of the four parallel forms and since they do not

end with enclitcs, we can deduce that the word ⇣

Ë YJ
⌦

™É s&yd~ is first-person feminine

and label it 1F+B, and that the wordYJ
⌦

™É s&yd is first-person masculine and labeled it

1M+B. Similarly, we determine that the words ’∫

⇣

J

 

ØQ™÷fl. bm&rftkm ‘know you [plural]

[M]’ and  
·∫

⇣

J

 

ØQ™÷fl. bm&rftkn ‘know you [plural] [F]’ are second-person masculine and

second-person feminine and only differ in terms of their enclitics, and therefore, would

be labeled as B+2M and B+2F, respectively.

4.3.4 Corpus Overview and Statistics

Original Corpus After the annotation, 8.2% of the sentences (5,205) were eliminated

due to malformed Arabic and annotation errors. This resulted in 58,035 sentences

(423,254 words), constituting our Original Corpus. Table 4.4(a) includes the statistics
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(a) (b)

Original Corpus Balanced Corpus
Sentences Label Rewrite Label Input Target 1M/2M Target 1F/2M Target 1M/2F Target 1F/2F Sentences

63.7% B B B B B B 36,980 46.0%
1.9% 1FB B+1M 1FB 1MB 1FB 1MB 1FB 3063 3.8%
3.3% 1MB B+1F 1MB 1MB 1FB 1MB 1FB 3063 3.8%
9.0% B2F B+2M B2F B2M B2M B2F B2F 17374 21.6%
21.0% B2M B+2F B2M B2M B2M B2F B2F 17374 21.6%

68 0.1% 1F2F 1M2F 1F2M 1M2M 1F2F 1M2M 1F2M 1M2F 1F2F 618 0.8%
135 0.2% 1F2M 1M2M 1F2F 1M2F 1F2M 1M2M 1F2M 1M2F 1F2F 618 0.8%
117 0.2% 1M2F 1F2F 1M2M 1F2M 1M2F 1M2M 1F2M 1M2F 1F2F 618 0.8%
298 0.5% 1M2M 1F2M 1M2F 1F2F 1M2M 1M2M 1F2M 1M2F 1F2F 618 0.8%

80,326

36,98
1,123
1,940
5,210
12,16

58,03

Table 4.4: Sentence-level statistics of the original corpus (a) and the balanced corpus (b)
with its five versions.

about the Original Corpus. Out of all sentences, 36,980 (63.7%) are labeled as B. There

are 17,374 (30%) sentences that include only second-person gendered references (BF and

BM). This is five times more than sentences with only first-person gendered references

(1FB and 1MB), which accounts for 5.3% (3,063 sentences) of all sentences. Moreover,

the number of sentences including first or second person masculine references is more

than the ones including feminine references (12,164 B2M vs 5,210 B2F, and 1,940

1MB vs 1,123 1FB). There are 618 (1.1%) sentences that have both first and second

gendered references. All of the sentences that have first or second (or both) person

gendered references are rewritten to introduce their opposite gender forms. This resulted

in 21,055 manually added sentences (162,055 words). The word-level statistics of our

Original Corpus are shown in Table 4.5(a). Among the newly added sentences, about

17% (27,596) of the words are gender-specific, constituting around 6.5% of all the words.

Balanced Corpus Similarly to Habash et al. (2019), to ensure equal gender repre-

sentation in our dataset, we force balance the corpus by adding the manually rewritten

sentences to the Original Corpus and using their original forms as their rewritten forms.

This constitutes our Balanced Corpus. The sentence-level statistics of the Balanced
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Corpus are presented in Table 4.4(b). This corpus has 80,326 sentences in total. Out of all

sentences, 46% (36,980) are marked as B, whereas sentences with gendered references

constituted 54% (43,346 sentences). We introduce five versions of the Balanced Corpus:

Input, Target 1M/2M, Target 1F/2M, Target 1M/2F, and Target 1F/2F. Each of these

target corpora is used to model the different target user contexts we are modeling for this

task. The balanced Input corpus, includes all the sentences from the Original Corpus

in addition to their rewritten forms. The Target 1M/2M corpus is the masculine-only

corpus and it includes sentences that are either invariant/ambiguous or have a first or

second person (or both) masculine references. Therefore, it only contains B, 1MB, B2M,

and 1M2M sentences. The Target 1M/2F corpus is the masculine-feminine corpus and it

contains sentences that are either invariant/ambiguous or have first person masculine ref-

erences, second person feminine references, or first person masculine and second person

feminine references (i.e., B, 1MB, B2F, and 1M2F sentences). The Target 1F/2M corpus

is the feminine-masculine corpus and it contains B, 1FB, B2M, and 1F2M sentences.

Finally, the Target 1F/2F corpus is the feminine-only corpus and it contains B, 1FB, B2F,

and 1F2F sentences. All five corpora have the same number of sentences, words, and

gendered-specific words. The word-level statistics of the Balanced Corpus are shown in

Table 4.5(b).

Corpus Splits To aid reproducibility when using APGC v2.0 for various research

experiments, we provide train, development, and test splits for all five balanced corpora.

Following Habash et al. (2019), all five corpora were divided randomly as follows:

training (Train: 70% or 57,603 sentences), development (Dev: 10% or 6,647 sentences)

and testing (Test: 20% or 16,076 sentences). We made sure that the splits are balanced

and all parallel versions of the sentences are in the same split.
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(a) (b)

Original Corpus Balanced Corpus
Words Label Rewrite Label Input Target 1M/2M Target 1F/2M Target 1M/2F Target 1F/2F Words

395,658 93.5% B+B B+B B+B B+B B+B B+B 538,733 90.3%
21 0.0% B+1F B+1M B+1F B+1M B+1F B+1M B+1F 43 0.0%
14 0.0% B+1M B+1F B+1M B+1M B+1F B+1M B+1F 43 0.0%
157 0.0% B+2F B+2M B+2F B+2M B+2M B+2F B+2F 1,419 0.2%

1,201 0.3% B+2M B+2F B+2M B+2M B+2M B+2F B+2F 1,419 0.2%
1,488 0.4% 1F+B 1M+B 1F+B 1M+B 1F+B 1M+B 1F+B 4,870 0.8%
2,698 0.6% 1M+B 1F+B 1M+B 1M+B 1F+B 1M+B 1F+B 4,870 0.8%
6,685 1.6% 2F+B 2M+B 2F+B 2M+B 2M+B 2F+B 2F+B 22,655 3.8%
15,297 3.6% 2M+B 2F+B 2M+B 2M+B 2M+B 2F+B 2F+B 22,655 3.8%

3 0.0% 1F+1F 1M+1M 1F+1F 1M+1M 1F+1F 1M+1M 1F+1F 10 0.0%
3 0.0% 1M+1M 1F+1F 1M+1M 1M+1M 1F+1F 1M+1M 1F+1F 10 0.0%
0 0.0% 1F+2F 1M+2M 1F+2M 1M+2F 1F+2F 1M+2M 1F+2M 1M+2F 1F+2F 1 0.0%
1 0.0% 1M+2M 1F+2M 1M+2F 1F+2F 1M+2M 1M+2M 1F+2M 1M+2F 1F+2F 1 0.0%
0 0.0% 1F+2M 1M+2M 1M+2F 1F+2F 1F+2M 1M+2M 1F+2M 1M+2F 1F+2F 1 0.0%
0 0.0% 1M+2F 1M+2M 1F+2M 1F+2F 1M+2F 1M+2M 1F+2M 1M+2F 1F+2F 1 0.0%
0 0.0% 2F+1F 2M+1M 2M+1F 2F+1M 2F+1F 2M+1M 2M+1F 2F+1M 2F+1F 1 0.0%
0 0.0% 2F+1M 2M+1M 2M+1F 2F+1F 2F+1M 2M+1M 2M+1F 2F+1M 2F+1F 1 0.0%
0 0.0% 2M+1F 2M+1F 2F+1M 2F+1F 2M+1F 2M+1M 2M+1F 2F+1M 2F+1F 1 0.0%
1 0.0% 2M+1M 2M+1F 2F+1M 2F+1F 2M+1M 2M+1M 2M+1F 2F+1M 2F+1F 1 0.0%
4 0.0% 2F+2F 2M+2M 2F+2F 2M+2M 2M+2M 2F+2F 2F+2F 32 0.0%
23 0.0% 2M+2M 2F+2F 2M+2M 2M+2M 2M+2M 2F+2F 2F+2F 32 0.0%

423,254 596,799

Table 4.5: Word-level statistics of the original corpus (a) and the balanced corpus (b)
with its five versions.

Machine Translation Outputs The efforts to develop APGC v1.0 and APGC v2.0

were motivated by the observation of common gender bias in user-unaware NLP systems

targeting morphologically rich languages, specifically Arabic in our case. As part of our

dataset, we generated machine translation outputs by translating the English portion of

the Input Balanced Corpus into Arabic using the Google Translate API. We selected

Google Translate due to its widespread use, though our approach can be applied to any

machine translation system. While Google Translate has made notable efforts to mitigate

gender bias–such as generating multiple gendered translations for certain language pairs

(Johnson, 2020)–Arabic is not yet among them. To support research on bias mitigation

and corrective post-editing, we include Google Translate’s outputs in our corpus release.
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4.4 Approach

In this section, we present the gender rewriting models explored in this dissertation. We

experiment with two main approaches: joint Seq2Seq models, which perform sentence-

level rewriting in a single pass without an explicit identification step (Alhafni et al.,

2020), and multi-step word-level models, which decompose the process into separate

identification and rewriting stages for finer control (Alhafni et al., 2022b). Below, we

describe both models and evaluate their performance on APGC v2.0.

4.4.1 Joint Gender Rewriting

Our joint gender rewriting model is a character-level Seq2Seq model. The encoder

consists of a two-layer bidirectional GRU (Cho et al., 2014), while the decoder is a

two-layer GRU with additive attention (Bahdanau et al., 2014) over the encoder’s hidden

states. Unlike the multi-step approach, this model rewrites sentences without an explicit

word-level gender identification step, directly generating the target-gendered output in a

single pass. To incorporate the user target gender, we employ side constraints (Sennrich

et al., 2016a). Specifically, we prepend a special token representing the target gender to

the input sentence (e.g., ‘<1M/2F> Input Sentence’). This token is treated like any other

in the vocabulary, allowing the encoder to learn a representation for it, which the decoder

then attends to when generating the output sequence.

Additionally, we explore enriching character representations with word-level mor-

phological features. We extract functional gender features from the CALIMAStar Arabic

morphological analyzer (Taji et al., 2018b), which is part of CAMeL Tools (Obeid et al.,

2020). These features indicate whether a word is masculine or feminine and whether its

analysis includes spelling back-off, and they are represented as a four-dimensional one-
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Figure 4.1: The multi-step gender rewriting system. First person gendered words are in
purple and second person gendered words are in red. The user target gender is 1M/2M.
The input words glad (1F+B), know you (B+2F), and ladies (2F+B) are rewritten to their
masculine forms.

hot vector. We append these morphological features to character-level representations,

enriching each character embedding with word-level information before feeding it into

the encoder. At inference time, we use beam search to generate the output sequence.

4.4.2 Multi-Step Gender Rewriting

Seq2Seq models, while effective for many text generation tasks, often suffer from

hallucinations and lack fine-grained control over the output (Ji et al., 2023). They also

require large amounts of training data to generalize well, which can be a challenge

in specialized tasks like gender rewriting. To address these limitations, we explore a
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controlled word-level multi-step approach that combines the strengths of rule-based and

neural models. Our system consists of three components: Gender Identification, Out-

of-Context Word Gender Rewriting, and In-Context Ranking and Selection. Figure 4.1

presents an overview of our mutli-step gender rewriting model.

Gender Identification: We first identify the word-level gender label (base word +

pronominal enclitic) for each word in the input sentence. We build a word-level classifier

by leveraging a Transformer-based pretrained language model. There are many Arabic

monolingual BERT models available such as AraBERT (Antoun et al., 2020), ARBERT

(Abdul-Mageed et al., 2021a), and QARIB (Abdelali et al., 2021). However, we chose

to use CAMeLBERT MSA (Inoue et al., 2021) as it was pretrained on the largest MSA

dataset to date. Following the work of Devlin et al. (2019), we fine-tune CAMeLBERT

MSA using Hugging Face’s transformers (Wolf et al., 2020) by adding a fully-connected

linear layer with a softmax on top of its architecture.

Out-of-context Word Gender Rewriting: Given the desired user target gender as an

input and the identified gender label for each word in the input sentence, we decide if a

word-level gender rewrite is needed based on the compatibility between the provided user

target gender and the predicted word-level gender labels. We implement three word-level

gender alternative generation models: Corpus-based Rewriter, Morphological Rewriter,

and Neural Rewriter:

• Corpus-based Rewriter (CorpusR): We build a simple word-level lookup rewrit-

ing model by exploiting the fully aligned words in the APGC. We implement this

model as a bigram maximum likelihood estimator: given an input word with its

bigram surrounding context (wi, wi�1), a gender alternative target word (yi), and
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a desired word-level target gender (g), the CorpusR model is built by computing

P (yi|wi, wi�1, g) over the training examples. During inference, we generate all

possible gender alternatives for the given input word (wi). If the bigram context

(wi, wi�1) was not observed in the training data, we backoff to a unigram context.

If the input word was not observed during training, we pass it to the output as it is.

• Morphological Rewriter (MorphR): For the morphological rewriter, we use

the morphological analyzer and generator provided by CAMeL Tools (Obeid

et al., 2020). We extend the Standard Arabic Morphological Analyzer database

(SAMA) (Graff et al., 2009) used by the morphological generator to produce

controlled gender alternatives. We make our extensions to the database publicly

available. Given an input word and a desired word-level target gender, the morpho-

logical generator has the ability to produce gender alternatives by either rewriting

the base word, its pronominal enclitics, or both. If an input word does not get

recognized by the morphological analyzer and generator, we pass it to the output as

it is. It is worth noting that this rewriting model does not require any training data.

• Neural Rewriter (NeuralR): The word-level neural rewriter shares the same

character-level encoder-decoder architecture as the joint model described in (§4.4.1),

utilizing a two-layer bidirectional GRU encoder and a two-layer GRU decoder

with additive attention. To incorporate word-level target gender information, we

use the same side constraint technique (Sennrich et al., 2016a) applied at the word

level. Specifically, we prepend a special token representing the target gender (e.g.,

[1F+B]) to the input word and we feed that entire sequence to the model (i.e.,

[1F+B]YJ
⌦

™É). During inference, we use beam search to generate the top 3-best

hypotheses.
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In-Context Ranking and Selection: Since the three word-level gender alternative

generation models we implement are out-of-context and given Arabic’s morphological

richness, we expect to get multiple output words when generating a single gender

alternative for a particular input word. This leads to producing multiple candidate

gender alternative output sentences. To select the best candidate output sentence, we

rank all candidates in full sentential context based on their pseudo-log-likelihood (PLL)

scores (Salazar et al., 2020). We first use Hugging Face’s transformers to fine-tune the

CAMeLBERT MSA model on the Input corpus of APGC by using a masked language

modeling (Devlin et al., 2019) objective. This helps in mitigating the domain shift

(Gretton et al., 2006) issue between CAMeLBERT’s pretraining data and APGC. We

then compute the PLL score for each sentence using the fine-tuned CAMeLBERT MSA

model by masking the sentence tokens one by one.

4.5 Experimental Setup

Evaluation Metrics We treat the gender rewriting problem as a grammatical error

correction task and use the MaxMatch (M2) Scorer (Dahlmeier and Ng, 2012) as our

evaluation metric. The M2 Scorer computes the precision (P), recall (R), and F0.5 by

maximally matching system edits with gold-standard edits. F0.5 weighs precision twice

as much as recall, to prioritize the accuracy of edits relative to all edits made by the

system. The gold edits are computed by the M2 Scorer based on provided gold references.

We also report BLEU (Papineni et al., 2002) scores using SacreBLEU (Post, 2018). We

report results in a normalized space for Alif, Ya, and Ta-Marbuta (Habash, 2010).

Baselines We introduce three baseline models. The first trivially copies input sentences

to the output, highlighting the similarity between inputs and outputs. The second and third
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use the sentence-level Seq2Seq joint rewriting model (§4.4.1). To assess the impact of

word-level morphological features, we evaluate two variants: one without morphological

features (Joint) and another incorporating them (Joint+Morph).

LLMs We evaluate four LLMs: two commercial models and two open-source, Arabic-

centric models. The commercial models include OpenAI’s GPT-3.5-turbo and GPT-4o

(OpenAI et al., 2024), while the Arabic-centric models are Jais-30B-Chat (Sengupta

et al., 2023) and the recently introduced Fanar LLM (Team et al., 2025). We prompt

GPT-3.5-turbo, GPT-4o, and Fanar through the OpenAI API, while Jais-30B-Chat is

prompted using Hugging Face’s Transformers (Wolf et al., 2020). Our experiments use

both English and Arabic prompts, employing 0-shot and 5-shot prompting strategies.

Additionally, we experiment with incorporating gender identification (GID) predictions

directly into the prompt, explicitly indicating gender-marking words. This strategy aims

to enhance performance by guiding the model to change only the gender-marking words

while preserving the original phrasing and lexical choices. Our prompt designs are

detailed in Tables A.1, A.2, and A.3 in Appendix A.1.

Multi-Step Models We explore five variants of the multi-step gender rewriting model

from §4.4.2, originally introduced by (Alhafni et al., 2022b). All five variants use the

same gender identification (GID) and in-context selection models, but differ in their

out-of-context word-level gender rewriting generation setup. The first three variants use

one word-level gender rewriting model each – CorpusR, MorphR, or NeuralR. The

fourth multi-step model uses MorphR as a backoff if the input words that need to be

rewritten are not observed by the CorpusR model during training (CorpusR»MorphR).

The fifth system uses all three word-level gender alternative generation models in a

backoff cascade: CorpusR»MorphR»NeuralR.
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Data Augmentation Given the relatively small size of APGC and motivated by work

on using data augmentation to improve grammatical error correction (Wan et al., 2020;

Stahlberg and Kumar, 2021), we investigate adding additional training examples through

data augmentation. We randomly selected 800K sentences from the English-Arabic

portion of the OpenSubtitles 2018 dataset, which was used to build APGC. We ensured

that all extracted pairs include either first or second (or both) person pronouns on the

English side: I, me, my, mine, myself, and you, your, yours, yourself. To generate gender

alternatives of the selected Arabic sentences, we pass each sentence four times through our

best gender rewriting system to generate all four user gender contexts (1M/2M, 1F/2M,

1M/2F, 1F/2F). We add the 800K selected Arabic sentences and their 1M/2M, 1F/2M,

1M/2F, 1F/2F generated gender alternatives to the Input, Target 1M/2M, Target 1F/2M,

Target 1M/2F, and Target 1F/2F corpora of the training split of APGC, respectively. At

the end, we end up with 857,603 Arabic parallel sentences (6,209,958 words).

4.5.1 Results

Table 4.6 presents the Dev set results. Joint+Morph improves over the Joint baseline

with 1.9 increase in M2 F0.5, highlighting the usefulness of the morphological features.

We present the LLM results (Table 4.6(d–h)) using their best configurations, deter-

mined by prompt language and strategy (0-shot vs. 5-shot). Full results are in Table A.4

in Appendix A.2. Among the LLMs, GPT-4o performs best with an F0.5 score of 52.8.

However, all LLMs underperform compared to the joint models, mainly due to over-

generation, making unnecessary edits beyond the intended gender-marking words, which

is reflected in the low BLEU scores. To address this, we conducted an additional ex-

periment where gender-marking words were explicitly identified using GID predictions

before prompting GPT-4o. This setup, GID+GPT-4o, significantly improved perfor-



49
P R F0.5 BLEU

(a) Do Nothing 100.0 0.0 0.0 89.4
(b) Joint 77.1 77.7 77.2 95.6
(c) Joint + Morph 79.0 79.8 79.1 96.2
(d) Fanar 12.6 43.7 14.7 39.5
(e) Jais-30B-Chat 8.2 33.4 9.6 24.5
(f) GPT-3.5-turbo 21.9 64.8 25.2 69.5
(g) GPT-4o 49.2 74.6 52.8 88.8
(h) GID + GPT-4o 77.1 77.7 77.2 96.3
(i) GID + CorpusR + Selection 88.2 71.2 84.2 96.5
(j) GID + MorphR + Selection 84.5 75.3 82.5 97.0
(k) GID + NeuralR + Selection 84.6 73.3 82.1 96.8
(l) GID + CorpusR » MorphR + Selection 88.6 85.8 88.0 98.0
(m) GID + CorpusR » MorphR » NeuralR + Selection 88.5 86.7 88.1 98.0
(n) GIDAug + CorpusR » MorphR » NeuralRAug + Selection 88.7 86.8 88.3 98.1

Table 4.6: Multi-user gender rewriting results on the Dev set of APGC v2.0. Aug
indicates using augmented data.

mance, raising the F0.5 score by 24.4 points to 77.2. These results highlight the utility of

GID as a control mechanism to better steer LLM outputs.

When it comes to the multi-step rewriting models (Table 4.6(i-n)), The best perform-

ing system overall is the model using all rewrite components (Table 4.6(m)), henceforth,

Our Best Model. It improves over the joint models and LLMs in every compared metric.

Our Best Model’s biggest advantages seem to come from combining the three word-level

out-of-context gender alternative generation models in a cascaded setup to deal with

OOV words during the generation. Comparing (m) with (c,i,j) in Table 4.6, we observe

improvements ranging from 3.91 to 6.02 F0.5.

We used Our Best Model to conduct the data augmentation experiments. The best

augmented model’s results, which benefits from augmentation in the GID and NeuralR

components, are also presented in Table 4.6(n). However, its increase of 0.19 points in

F0.5 is not statistically significant with McNemar’s (McNemar, 1947) test at p > 0.05.

The results of our best models on the Test sets of APGC v2.0 are presented in
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P R F0.5 BLEU

Joint + Morph 79.3 80.4 79.5 96.2
GID + GPT-4o 76.4 76.5 76.4 96.2
GID + CorpusR » MorphR » NeuralR + Selection 88.7 86.1 88.2 98.0
GIDAug + CorpusR » MorphR » NeuralRAug + Selection 88.9 86.7 88.4 98.1

Table 4.7: Gender rewriting results on the Test sets of APGC v2.0.

Table 4.7. The results on APGC v2.0 Test show consistent conclusions with the Dev

results. Our best augmented model improves over its non-augmented variant in every

compared metric, including a 0.25 absolute increase in F0.5 that is statistically significant

with McNemar’s test at p < 0.05.

4.5.2 Error Analysis

We conducted an error analysis over the output of our best augmented system on

APGC v2.0 Dev. In total, there were 1,475 (5.5% out of 26,588) sentences with errors

across the four target corpora. Table 4.8 presents a summary of the error types our best

augmented model makes. The majority of errors (67.3%) were caused by GID which

achieves a word-level accuracy of 98.9% on Dev. The gender-rewriting errors constituted

18.1% and selection errors 14.6%. Considering different target corpora, we observe that

every time an F target is added, the number of errors increases. The 1M/2M target outputs

has the lowest number of errors (268 or 18%), while the 1M/2F targets outputs has the

highest number of errors (480 or 33%).

4.5.3 Use Case: Post-Editing MT Output

We demonstrate next how our proposed gender rewriting model could be used to person-

alize the output of user-unaware MT systems through post-editing. We use the English
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1M/2M 1F/2M 1M/2F 1F/2F

GID 150 56% 194 70% 325 68% 324 72%
Rewrite 69 26% 50 18% 82 17% 66 15%
Select 49 18% 35 13% 73 15% 58 13%

Total 268 279 480 448

Table 4.8: Error type statistics of our best augmented system’s performance on APGC
v2.0 Dev.

Target 1M/2M 1F/2M 1M/2F 1F/2F
Google Translate 13.6 13.2 11.4 11.0
Best SystemAug 13.7 13.6 13.3 13.2

Table 4.9: BLEU results on the post-edited Google Translate output of APGC v2.1 Test
using our best augmented system.

to Arabic Google Translate output sentences that are part of APGC v2.0. We evaluate

Google Translate’s output against all four target corpora (1M/2M, 1F/2M, 1M/2F, 1F/2F)

separately. To re-target Google Translate’s Arabic output for the four user gender contexts

we model, we pass each Arabic sentence four times through our best augmented system

(Table 4.6(n)). We present the evaluation in terms of BLEU in Table 4.9 over APGC v2.0

Test. All the results are reported in a normalized space for Alif, Ya, and Ta-Marbuta.

Again, we observe that every time an M participant is switched to F, the BLEU scores

drop for Google Translate’s output. This highlights the bias the machine translation

output has towards masculine grammatical gender preferences. The post-edited outputs

generated by our best augmented system improves over Google Translate’s across the

four target user contexts, achieving the highest increase in 2.27 BLEU points for 1F/2F.
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4.6 The User-Aware Arabic Gender Rewriter

We develop a web-based application introduced in Alhafni et al. (2023b) that leverages

our best-performing multi-step gender rewriting model, enabling users to interact with a

fully functional Arabic gender rewriting system. The system accepts both Arabic and

English input sentences, allowing users to specify their desired first- and/or second-

person grammatical gender preferences. For Arabic input, it generates gender-rewritten

alternatives that align with the specified user preferences. For English input, it first

translates the text into Arabic using Google Translate before applying gender rewriting.

To the best of our knowledge, this is the first open-access web-based system for Arabic

gender rewriting, providing a practical tool for generating personalized, user-aware

outputs.

Figure 4.2 illustrates the web-based system. At the top, there is a text box to input

either English or Arabic text. At each side of the text box, there are two selection buttons

to indicate the desired target gender preferences for the speaker and the listener (⇢ is for

masculine and ⇡ is for feminine). Users can choose any combination of target genders,

including no target gender selection (i.e., requesting no rewriting). Once the user clicks

on the Translate & Rewrite button, any English input is first translated into Arabic using

the Google Translate API before generating gendered alternatives. When the gender

rewriting process is done, additional text boxes will appear: the first text box will always

contain the gender-identified Arabic inputs and the rest of the text boxes will contain

the gender rewritten alternatives. Each gender marking word in the gender-identified

input text box will be labeled as either masculine (⇢) or feminine (⇡). First-person (i.e.,

speaker) gendered words are colored in blue and second-person (i.e., listener) gendered

words are colored in orange.
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Figure 4.2: The Arabic Gender Rewriter interface showing gender rewritten alternatives
of three input sentences in four modes: (a) Target speaker ⇡ gender rewrites, (b) Target
speaker ⇡ and target listener ⇡ and ⇢ gender rewrites, (c) Target speaker ⇡ and ⇢ and
target listener ⇡ gender rewrites, and (d) Target speaker ⇡ and ⇢ and target listener ⇡ and
⇢ gender rewrites. Speaker gendered words are in blue and listener gendered words are
in orange.

The number of output text boxes corresponds to the selected target gender preferences.

Each box is labeled according to the gender combination it represents. For instance, in

Figure 4.2(a), two text boxes display first-person masculine and feminine alternatives,

while Figure 4.2(b) shows four text boxes containing gendered alternatives for both first-

and second-person references.
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4.7 The Shared Task on Arabic Gender Rewriting

To raise awareness of gender bias in Arabic NLP and encourage the development of

mitigation strategies, we organized a shared task on gender rewriting for Arabic as part

of the Seventh Arabic Natural Language Processing Workshop (WANLP), collocated

with EMNLP 2022. This was the first WANLP shared task in seven years to focus on

Arabic language generation. A total of five teams from four countries participated.

4.7.1 Data

Participants were only allowed to use the publicly available APGC v2.0 to build their

systems. To ensure a fair comparison between all participants, we manually annotated

a new blind test set to evaluate their systems. The new blind test set was selected and

annotated by following the same guidelines used to build the APGC (§4.3). This corpus

has 7,318 sentences in total. Out of all sentences, 38.5% (2,818) are marked as B, whereas

sentences with gendered references constituted 61.5% (4,500 sentences).

4.7.2 Participants and Systems

Table 4.10 presents the names of the participating teams and their affiliations. All

participants leveraged pretrained language models such as AraBERT (Antoun et al.,

2020), CAMeLBERT (Inoue et al., 2021), T5 (Raffel et al., 2020), and AraT5 (Nagoudi

et al., 2022), when developing their systems. Some systems consisted of multiple

components to do gender identification and then rewriting as we did in §4.4.2, while

others treated the problem as a traditional Seq2Seq task. Table 4.11 presents a summary

of the different approaches used to develop the different systems.
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Team Affiliation
Cairo Team Microsoft Egypt, Egypt
CasaNLP Archipel Cognitive; and Leyton, Morocco
Distinguishers Taif University; and Umm Alqura University, KSA
Qaddoumi New York University, USA
UDEL-NLP University of Delaware, USA

Table 4.10: List of the five teams who participated in the gender rewriting shared task.

Team Gender ID Special Preprocessing Pretrained Models
Cairo Team " CAMeLBERT-MSA + AraT5-MSA
CasaNLP " Word Side Constraints CAMeLBERT-MSA + AraT5-MSA
Distinguishers " Morphological Features CAMeLBERT-MSA + AraBERT
Qaddoumi Romanization T5
UDEL-NLP Sentence Side Constraints ArabicT5

Table 4.11: Approaches and techniques used by the participants. Gender ID refers to
gender identification. Special Preprocessing refers to any form of preprocessing done to
modify the data (e.g., adding side-constraints, morphological processing, transliteration,
etc.). Pretrained Models indicates the usage of pretrained models as part of the system.

4.7.3 Results

Table 4.12 presents the results on the newly annotated Blind Test set. The last row is

for the state-of-the-art system in §4.4.2. The best result in terms of F0.5 is achieved by

the Cairo Team (75.4), the official winner of the shared task. This is mainly due to their

high score in precision (76.3). Qaddoumi comes in second place achieving an F0.5 of

59.7, followed by UDEL-NLP in third place with 59.1 in F0.5. In fourth place, CasaNLP

achieves an F0.5 score of 55.45 with the highest recall of 84.6. Distinguishers comes in

fifth place, achieving 20.5 in F0.5. It is worth noting that none of the systems is able to

beat the previously published system by our system applied to the new Blind Test.
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Team P R F0.5 BLEU
Cairo Team 76.3 (1) 72.3 (3) 75.4 (1) 94.9 (1)
CasaNLP 51.1 (4) 84.6 (1) 55.5 (4) 86.1 (4)
Distinguishers 20.9 (5) 19.0 (5) 20.5 (5) 84.9 (5)
Qaddoumi 56.5 (3) 77.1 (2) 59.7 (2) 88.5 (3)
UDEL-NLP 57.1 (2) 68.6 (4) 59.1 (3) 91.0 (2)
Alhafni et al. (2022b) 88.5 85.0 87.8 97.6

Table 4.12: Results on the Blind Test set. Numbers in parentheses are the ranks.

(a)
Team Word �
Cairo Team 0.80%
CasaNLP -0.02%
Distinguishers 1.28%

Qaddoumi -0.63%
UDEL-NLP 0.05%

(b)
Metric Correl
P -42.95%
R -77.56%
F0.5 -50.86%
BLEU -11.86%

Table 4.13: (a) The relative difference in the number of generated words for each team in
comparison with the Blind Test reference. (b) The Pearson correlation of the shared task
metrics in Table 4.12 with the absolute values of Word �.

4.7.4 Error Analysis

We conducted a simple error analysis over the outputs of all system on the Blind Test set.

Given that most teams employed sentence-level Seq2Seq models when developing their

gender rewriting systems, we suspected that the outputs will be noisy since sentence-level

models will not guarantee that changes are only applied to gendered words, or maintain

the word-level parallelism between the input and output. Table 4.13(a) presents the

relative difference in the number of generated words for each team in comparison with

the Blind Test reference; and Table 4.13(b) presents their correlation with the shared task

metrics. None of the teams maintained the total number of words. We observe a strong

negative correlation between the absolute value of relative word count differences and the

evaluation metrics – almost -51% correlation with F0.5, and -78% correlation with recall.
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4.8 Summary

In this chapter, we introduced the task of gender rewriting for Arabic. We presented

the Arabic Parallel Gender Corpus and explored different gender rewriting approaches,

including LLMs, a joint sentence-level Seq2Seq model, and a word-level multi-step

approach. Our experiments demonstrated that the word-level multi-step approach out-

performs the Seq2Seq model by providing finer control over the generation process.

Additionally, we showcased how this system can help mitigate gender bias in English-

to-Arabic machine translation. To facilitate user interaction, we developed a web-based

application that seamlessly integrates the model. Lastly, we discussed our findings from

a shared task on Arabic gender rewriting that we organized.

Our primary motivation behind this work is to enhance the inclusiveness of NLP

applications for morphologically rich, gender-marked languages. Our work aims to em-

power users by enabling them to interact with NLP systems in ways that align with their

social identities. However, we acknowledge that our approach–limited to grammatical

gender in Arabic–excludes other alternatives, such as non-binary or gender-neutral ex-

pressions. Currently, we are unaware of any published sociolinguistic research exploring

such alternatives in Arabic. Nevertheless, we emphasize the importance of adapting

Arabic NLP models to accommodate emerging gender expressions as language usage

evolves. Looking ahead, we envision a future where websites and translation systems

integrate automatic gender rewriting, allowing users to customize gender presentation

through intuitive settings, much like selecting a preferred language.
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Chapter 5

Arabic Grammatical Error Detection

and Correction

In this chapter, we present a comprehensive study on Modern Standard Arabic (MSA)

grammatical error correction (GEC). We report the first results on MSA GEC using

Transformer-based pretrained Seq2Seq models and introduce the task of multi-class

MSA grammatical error detection (GED). We show that conditioning Seq2Seq models

on error patterns by incorporating GED predictions as auxiliary input significantly

improves GEC performance. Beyond model architectures, we investigate the impact of

contextual morphological preprocessing on Arabic GEC. Additionally, we benchmark

open-source and commercial LLMs to assess their performance on MSA GEC. Our

models achieve state-of-the-art results on two MSA GEC shared task datasets: one

consisting of comments written by native speakers (L1) and the other of essays written

by second-language learners (L2). Additionally, we establish a strong benchmark on a

recently introduced MSA GEC dataset consisting of L1 essays.
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5.1 Introduction

Grammatical Error Correction (GEC) aims to correct errors in text, including grammatical

mistakes such as missing prepositions and subject-verb agreement mismatches, as well as

orthographic and semantic errors like misspellings and incorrect word choices. Most state-

of-the-art systems adopt neural machine translation techniques to transform erroneous

text into its corrected form. In contrast, grammatical error detection (GED) is framed as

a sequence labeling task that identifies and classifies errors. Both GEC and GED have

significant pedagogical applications for native (L1) and second-language (L2) learners.

While GEC and GED have been widely studied in English, research on morpho-

logically rich languages remains limited due to the scarcity of annotated datasets with

standardized error types. In Arabic, the application of Seq2Seq modeling for GEC is still

underexplored, and multi-class Arabic GED has yet to be investigated.

In this chapter, we focus on Modern Standard Arabic (MSA). We benchmark pre-

trained Arabic Seq2Seq models and LLMs on GEC and formalize the task of multi-class

MSA GED by enriching existing parallel GEC datasets with error type annotations. We

also show that conditioning models on GED predictions improves GEC performance. For-

mally, given an erroneous Arabic sentence X and its corresponding error type sequence

E, the task is to generate the corrected version Y :

P (Y |X,E) =
nY

t=1

P (yt|y1, ..., yt�1, X,E)

Additionally, we explore the impact of contextual morphological preprocessing on GEC

performance. Our models achieve state-of-the-art results on two MSA GEC (L1 and L2)

datasets and establish a strong benchmark on a recently created L1 MSA GEC dataset.
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5.2 Background and Related Work

GEC Approaches

Early GEC efforts focused on building feature-based machine learning (ML) classifiers

to fix common error types (Chodorow et al., 2007; Tetreault and Chodorow, 2008;

Dahlmeier and Ng, 2011; Kochmar et al., 2012; Rozovskaya and Roth, 2013; Farra et al.,

2014). Such models required feature engineering and lacked the ability to correct all

error types simultaneously. Reformulating GEC as a monolingual machine translation

task alleviated these issues, first with statistical machine translation approaches (Felice

et al., 2014; Junczys-Dowmunt and Grundkiewicz, 2014, 2016) and then neural machine

translation approaches (Yuan and Briscoe, 2016; Xie et al., 2016; Watson et al., 2018b),

with Transformer-based models being the most dominant (Junczys-Dowmunt et al., 2018;

Yuan et al., 2019; Zhao et al., 2019; Grundkiewicz et al., 2019; Katsumata and Komachi,

2020; Kaneko et al., 2020; Wan et al., 2020; Yuan et al., 2021; Yuan and Bryant, 2021;

Stahlberg and Kumar, 2021; Rothe et al., 2021; Zhou et al., 2023a; Luhtaru et al., 2024).

To improve efficiency and interpretability, text editing models have emerged as an

alternative to Seq2Seq approaches (Awasthi et al., 2019; Malmi et al., 2019; Stahlberg

and Kumar, 2020; Mallinson et al., 2020; Omelianchuk et al., 2020; Straka et al., 2021;

Mallinson et al., 2022; Tarnavskyi et al., 2022; Mesham et al., 2023; Zhang et al., 2023).

Unlike Seq2Seq models, which generate corrected text from scratch, text editing models

treat GEC as a sequence tagging task, producing a set of edit operations that modify the

erroneous input. We present a novel text editing model for GEC in chapter 7.

LLMs have also been evaluated on GEC (Fang et al., 2023; Coyne et al., 2023; Wu

et al., 2023; Loem et al., 2023; Raheja et al., 2023; Kaneko and Okazaki, 2023; Raheja
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et al., 2024; Davis et al., 2024; Katinskaia and Yangarber, 2024; Omelianchuk et al., 2024;

Mita et al., 2024; Kaneko and Okazaki, 2024). In our work, we benchmark commercial

and open-source LLMs on MSA GEC.

GED Approaches

When it comes to GED, Rei and Yannakoudakis (2016) presented the first GED results

using a neural approach framing GED as a binary (correct/incorrect) sequence tagging

problem. Others used pretrained language models such as BERT (Devlin et al., 2019),

ELECTRA (Clark et al., 2020), and XLNeT (Yang et al., 2019a) to improve binary GED

(Bell et al., 2019; Kaneko and Komachi, 2019; Yuan et al., 2021; Rothe et al., 2021). Zhao

et al. (2019) and Yuan et al. (2019) demonstrated that combining GED and GEC yields

improved results: they used multi-task learning to add token-level and sentence-level

GED as auxiliary tasks when training for GEC. Similarly, Yuan et al. (2021) showed that

binary and multi-class GED improves GEC.

Arabic GED and GEC

Although GEC has been studied in other languages (Bryant et al., 2023) such as Chinese

(Zhao et al., 2018c; Rao et al., 2020), Czech (Náplava and Straka, 2019; Náplava et al.,

2022), German (Boyd, 2018), Japanese (Koyama et al., 2020), Russian (Rozovskaya and

Roth, 2019), and Ukrainian (Syvokon et al., 2023), most research efforts have mainly

focused on English and gained popularity through a series of shared tasks (Dale and

Kilgarriff, 2011; Ng et al., 2013, 2014; Bryant et al., 2019). When it comes to Arabic,

GEC research gained traction due to the QALB-2014 (L1) (Mohit et al., 2014b) and

QALB-2015 (L1 and L2) (Rozovskaya et al., 2015a) shared tasks that were organized

as part of the Qatar Arabic Language Bank (QALB) project (Zaghouani et al., 2014,
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2015a). More recently, Habash and Palfreyman (2022) introduced the Zayed Arabic-

English Bilingual Undergraduate Corpus (ZAEBUC) corpus, a dataset of essays written

by L1 university students. In this work, we leverage the QALB-2014, QALB-2015, and

ZAEBUC.

Arabic GEC modeling efforts ranged from feature-based ML classifiers to statistical

MT models (Rozovskaya et al., 2014; Attia et al., 2014; Bougares and Bouamor, 2015;

Nawar, 2015). Watson et al. (2018b) introduced the first character-level Seq2Seq model

and achieved state-of-the-art (SOTA) results on the L1 Arabic GEC data used in the

QALB-2014 and 2015 shared tasks. Recently, vanilla Transformers were explored for

synthetic data generation to improve L1 Arabic GEC and were tested on the L1 data

of the QALB-2014 and 2015 shared tasks (Solyman et al., 2021, 2022, 2023). To our

knowledge, the last reported QALB-2015 L2 results appeared in the original shared task.

A number of researchers reported on Arabic binary GED. Habash and Roth (2011)

used feature-engineered SVM classifiers to detect Arabic handwriting recognition errors.

Alkhatib et al. (2020) and Madi and Al-Khalifa (2020) used LSTM-based classifiers.

None of them used any of the publicly available GEC datasets mentioned above to

train and test their systems. In our work, we explore multi-class GED by obtaining

error type annotations from ARETA (Belkebir and Habash, 2021), an automatic error

type annotation tool for MSA. To our knowledge, we are the first to report on Arabic

multi-class GED.

Arabic GEC Challenges

While its orthography is standardized, written MSA suffers many orthographic incon-

sistencies (§2) even in professionally written news articles (Buckwalter, 2004b; Habash
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et al., 2012a). For example, hamzated Alifs (

�

@ Â, @
�
Ǎ) are commonly confused with the

un-hamzated letter ( @ A), and the word-final letters ¯

⌦

y and ¯ ý are often used inter-

changeably. These errors affect 11% of all words (4.5 errors per sentence) in the Penn

Arabic Treebank (Habash, 2010). Additionally, the use of punctuation in Arabic is very

inconsistent, and omitting punctuation marks is very frequent (Awad, 2013; Zaghouani

and Awad, 2016). Punctuation errors account for approximately 40% of all errors in the

QALB-2014 GEC shared task–ten times higher than those found in the English data used

in the CoNLL-2013 GEC shared task (Ng et al., 2013).

Beyond orthography, Arabic’s rich morphology presents additional challenges for

GEC. The language inflects for gender, number, person, case, state, mood, voice, and

aspect, while also incorporating cliticized particles and pronouns. These factors sig-

nificantly expand vocabulary size and introduce structural complexity. Moreover, due

to diglossia, native speakers writing in MSA frequently code-switch by incorporating

elements from their dialects (§2).

5.3 Approach

5.3.1 Arabic Grammatical Error Detection

Most of the work on GED has focused on English (§5.2), where error type annotations

are provided manually (Yannakoudakis et al., 2011; Dahlmeier et al., 2013) or obtained

automatically using an error type annotation tool such as ERRANT (Bryant et al., 2017).

However, when it comes to morphologically rich languages such as Arabic, GED remains

a challenge. This is largely due to the lack of manually annotated data and standardized

error type frameworks. In this work, we treat GED as a mutli-class sequence labeling task.
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We present a method to automatically obtain error type annotations by extracting edits

from parallel erroneous and corrected sentences and then passing them to an Arabic error

type annotation tool. To the best of our knowledge, this is the first work that explores

multi-class GED in Arabic.

Edit Extraction

Before automatically labeling each erroneous sentence token, we need to align the

erroneous and corrected sentence pairs to locate the positions of all edits so as to map

errors to corrections. This step is usually referred to as edit extraction in GEC literature.

We first obtain character-level alignment between the erroneous and corrected sen-

tence pair by computing the weighted Levenshtein edit distance (Levenshtein, 1966) for

each pair of tokens in the two sentences. The output of this alignment is a sequence of

token-level edit operations representing the minimum number of insertions, deletions,

and replacements needed to transform one token into another. Each of these operations

involves one token at most belonging to either sentence. However, some errors may

involve more than one single edit operation. To capture multi-token edits, we extend

the alignment to cover merges and splits by implementing an iterative algorithm that

greedily merges or splits adjacent tokens such that the overall cumulative edit distance is

minimized.

Error Type Annotation

Next, we pass the extracted edits to an automatic annotation tool to label them with

specific error types. We use ARETA, an automatic error type annotation tool for MSA

(Belkebir and Habash, 2021). Internally, ARETA is built using a combination of rule-

based components and an Arabic morphological analyzer (Taji et al., 2018a; Obeid et al.,
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QALB-2014 QALB-2015

P " R " AER # P " R " AER #
M2 92.5 87.1 0.10 90.8 83.3 0.13
Lev. 86.8 84.3 0.14 84.5 84.2 0.16
ARETA 84.3 82.9 0.16 84.1 84.7 0.16
Ours 99.6 99.7 0.00 97.7 98.0 0.02

Table 5.1: Evaluation of different alignment algorithms.

2020). It uses the error taxonomy of the Arabic Learner Corpus (ALC) (Alfaifi and

Atwell, 2012; Alfaifi et al., 2013) which defines seven error classes covering orthography

(O), morphology (M), syntax (X), semantics (S), punctuation (P), merges, and splits. The

error classes are further differentiated into 32 error tags that can be assigned individually

or in combination.

ARETA comes with its own alignment algorithm that extracts edits, however, it does

not handle many-to-one and many-to-many edit operations (Belkebir and Habash, 2021).

We replace ARETA’s alignment algorithm with ours to increase the coverage of error

typing. Using our edit extraction algorithm with ARETA enables us to automatically

annotate single-token and multi-token edits with various error types. Table 5.2 presents

the error types obtained from ARETA using our alignment over the three GEC datasets

we use.

To demonstrate the effectiveness of our alignment algorithm, we compare our algo-

rithm to the alignments generated by the M2 scorer, a standard Levenshtein edit distance,

and ARETA. Table 5.1 presents the evaluation results of the alignment algorithms against

the manual gold alignments of the QALB-2014 and QALB-2015 Dev sets in terms of

precision (P), recall (R), and alignment error rate (AER) (Mihalcea and Pedersen, 2003;

Och and Ney, 2003). Results show that our alignment algorithm is superior across all

metrics.
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Tag Error Description Example QALB-2014 QALB-2015 ZAEBUC

Orthography
(O)

OA Alif, Ya & Alif-Maqsura علي ← على 7,627 3% 290 2% 27 0%
OC Char Order تبرینا ← تربینا 466 0% 45 0% 30 0%
OD Additional Char یعدوم ← یدوم 4,086 1% 283 2% 103 2%
OG Lengthening short vowels نقیمو ← نقیم 0 0% 0 0% 0 0%
OH Hamza errors اكثر← أكثر 90,579 30% 1,076 8% 1,905 32%
OM Missing char(s) سالین ← سائلین 4,062 1% 361 3% 123 2%
ON Nun & Tanwin Confusion ثوبن ← ثوبٌ 0 0% 0 0% 0 0%
OR Char Replacement مصلنا ← وصلنا 8,350 3% 762 6% 162 3%
OS Shortening long vowels أوقت ← أوقات 0 0% 0 0% 0 0%
OT Ha/Ta/Ta-Marbuta Confusion مشاركھ ← مشاركة 14,688 5% 54 0% 408 7%
OW Confusion in Alif Fariqa وكانو ←  وكانوا 1,885 1% 32 0% 12 0%
OO Other orthographic errors - 1,632 1% 38 0% 148 2%

Morphology
(M)

MI Word inflection معروف ← عارف 1,360 0% 400 3% 127 2%
MT Verb tense تفرحني ← أفرحتني 76 0% 136 1% 4 0%
MO Other morphological errors - 15 0% 7 0% 3 0%

Syntax
(X)

XC Case رائع ← رائعاً 5,980 2% 279 2% 201 3%
XF Definiteness السن ← سن 852 0% 835 6% 51 1%
XG Gender الغربي ← الغربیة 809 0% 317 2% 86 1%
XM Missing word Null ← على 1,375 0% 763 6% 68 1%
XN Number فكرتي ← أفكاري 1,107 0% 210 2% 30 0%
XT Unnecessary word Null← على 1,047 0% 418 3% 116 2%
XO Other syntactic errors - 3,270 1% 122 1% 57 1%

Semantics
(S)

SF Conjunction error سبحان ← فسبحان 96 0% 46 0% 4 0%
SW Word selection error من ← عن 4,711 2% 865 7% 120 2%
SO Other semantic errors - 380 0% 114 1% 27 0%

Punctuation
(P)

PC Punctuation confusion قال. ← قال: 11,361 4% 854 7% 237 4%
PM Missing punctuation العظیم ←  العظیم، 97,271 32% 2,915 22% 479 8%
PT Unnecessary punctuation العام,  ← العام 5,553 2% 213 2% 204 3%
PO Other errors in punctuation - 0 0% 0 0% 0 0%

Merge MG Words are merged لایلزم ← لا یلزم 15,063 5% 377 3% 849 14%
Split SP Words are split و قال ← وقال  7,828 3% 80 1% 49 1%

Unknown UNK Unkown Errors الظالمون ← الذین ظلموا  2,053 1% 303 2% 93 2%
Comb. - Error Combinations انسانیھ ← إنسانیة  11,304 4% 848 7% 314 5%

304,886 13,043 6,037

Table 5.2: The statistics of the error types in the Train sets of QALB-2014, QALB-2015,
and ZAEBUC. The error types are based on the extended ALC (Alfaifi et al., 2013)
taxonomy as used by Belkebir and Habash (2021).
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A
lignm

ents

13 12 11 10 9 8 7 6 5 4 3 2 1
Erroneous وا౶ׇඞ๪ৃڬ ۹ܿشحڰ ׇቘቇ܁ اׇؔر ׇଔଐ ᄸჱක๱ڬ ف ᇃᆭׇڏغ܄ক঑ا ا۳غݨاܬۭ و؁ׇۭܿ إܿغ໯َام ܁܆ খ঑ࡻ࢖

wAyjAbyh slbyħ mnhA AθAr lhA f bHkmh AlĂjtmAςy AltwASl wsAŷl ĂstxdAm mn lAbd
14 13 12 11 10 9 8 7 6 5 4 3 2 1

Corrected . و౶ׇඞ๪ዥৃڰ ۹ܿشحڰ آׇؔر ۹٣ڳׇ ، ᄸჱක๱ڰ ᇃᆭׇڏغ܄খ঑ا ا۳غݨاܬۭ و؁ׇۭܿ اܿغ໯َام ܁܆ খ঑ ࡻ࢖
wAyjAbyħ slbyħ ĀθAr flhA bHkmħ AlAjtmAςy AltwASl wsAŷl AstxdAm mn bd lA

Edits

M² R

K K R K SLev. R M
R

M
R RARETA R K D R R

Ours I R K D M I

Error Type

43-Class PM OH+OT Delete OH Merge PM OT OH OH Split

13-Class P O Delete O Merge P O O O Split

2-Class E E E E E E E E E E

Figure 5.1: An example showing the differences between the alignments of the M2

scorer, a standard Levenshtein distance, ARETA, and our proposed algorithm. The edit
operations are keep (K), replace (R), insert (I), delete (D), merge (M), and split (S).
Dotted lines between the erroneous and corrected sentences represent gold alignment.
The last three rows present different granularities of ARETA error types based on our
alignment. The sentence in the figure can be translated as “Social media must be used
wisely, as it has both negative and positive effects”.

Figure 5.1 presents an example of the different alignments generated by the algorithms

we evaluated. The M2 scorer’s alignment over-clusters multiple edits into a single edit

(words 6–13). This is not ideal, particularly because the M2 scorer does not count partial

matches during the evaluation, which leads to underestimating the models’ performances

(Felice and Briscoe, 2015). A standard Levenshtein alignment does not handle merges

correctly, e.g., words 8 and 9 in the erroneous sentence are aligned to words 9 and 10 in

the corrected version. Among the drawbacks of ARETA’s alignment is that it does not

handle merges, e.g., erroneous words 8 and 9 are aligned with corrected words 9 and 10,

respectively.
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5.3.2 Arabic Grammatical Error Correction

Recently developed GEC models rely on Transformer-based architectures, from standard

Seq2Seq models to edit-based systems built on top of Transformer encoders. Given

Arabic’s morphological richness and the relatively small size of available data, we explore

different GEC models, from morphological analyzers and rule-based systems to pre-

trained Seq2Seq models. Primarily, we are interested in exploring modeling approaches

to address the following two questions: RQ1) Does morphological preprocessing en-

hance Arabic GEC? RQ2) Does explicitly modeling GED improve Arabic GEC? We also

evaluate LLMs on Arabic GEC to compare their performance with specialized models.

Morphological Disambiguation (Morph) We use the current SOTA MSA morpho-

logical analyzer and disambiguator from CAMeL Tools (Inoue et al., 2022; Obeid et al.,

2020). Given an input sentence, the analyzer generates a set of potential morphological

analyses for each word and the disambiguator selects the optimal analysis in context. The

analyses include minimal spelling corrections for common errors, diacritizations, POS

tags, and lemmas. We use the dediacritized (§2.3) spellings as the corrections.

Maximum Likelihood Estimation (MLE) We exploit our alignment algorithm to

build a simple lookup model to map erroneous words to their corrections. We im-

plement this model as a bigram maximum likelihood estimator over the training data:

P (ci|wi, wi�1, ei); where wi and wi�1 are the erroneous word (or phrases in case of a

merge error) and its bigram context, ei is the error type of wi, and ci is the correction of

wi. During inference, we pick the correction that maximizes the MLE probability. If the

bigram context (wi and wi�1) was not observed during training, we backoff to a unigram.

If the erroneous input word was not observed in training, we pass it to the output.
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LLMs Similar to Chapter 4 on gender rewriting, we evaluate four LLMs: two com-

mercial models (OpenAI’s GPT-3.5-turbo and GPT-4o (OpenAI et al., 2024)) and two

open-source, Arabic-centric models (Jais-30B-Chat (Sengupta et al., 2023) and Fanar

LLM (Team et al., 2025)). We use both English and Arabic prompts with 0-shot and

5-shot strategies. To elicit minimal edit-style corrections, we design the prompts to

keep the LLMs’ outputs as close as possible to the original input in phrasing and lexical

choices. Additionally, we incorporate GED predictions directly into the prompts, explic-

itly marking erroneous words to guide the models further. Our prompts are presented in

Tables B.1, B.2, and B.3 in Appendix B.1.

Seq2Seq with GED Models We experiment with two newly developed pretrained

Arabic Transformer-based Seq2Seq models: AraBART (Kamal Eddine et al., 2022)

(pretrained on 24GB of MSA data mostly in the news domain), and AraT5 (Nagoudi

et al., 2022) (pretrained on 256GB of both MSA and Twitter data). We extend the

Seq2Seq models we use to incorporate token-level GED information during training and

inference. Specifically, we feed predicted GED tags as auxiliary input to the Seq2Seq

models. We add an embedding layer to the encoders of AraBART and AraT5 right after

their corresponding token embedding layers, allowing us to learn representations for the

auxiliary GED input. The GED embeddings have the same dimensions as the positional

and token embeddings, so all three embeddings can be summed before they are passed

to the multi-head attention layers in the encoders. Our approach is similar to what was

done by Yuan et al. (2021), but it is much simpler as it reduces the model’s size and

complexity by not introducing an additional encoder to process GED input. Since the

training data we use is relatively small, not drastically increasing the size of AraBART

and AraT5 becomes important not to hinder training.
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5.4 Experimental Setup

5.4.1 Data

We report on three publicly available Arabic GEC datasets. The first two come from the

QALB-2014 (Mohit et al., 2014a) and QALB-2015 (Rozovskaya et al., 2015b) shared

tasks. The third is the newly created ZAEBUC dataset (Habash and Palfreyman, 2022).

None of them were manually annotated for specific error types. Dataset statistics are

presented in Table 5.3. QALB-2014 consists of Native/L1 user comments from the

Aljazeera news website, whereas QALB-2015 consists of essays written by Arabic L2

learners with various levels of proficiency. Both datasets have publicly available training

(Train), development (Dev), and test (Test) splits. The ZAEBUC dataset comprises

essays written by Native Arabic speakers, which were manually corrected and annotated

for writing proficiency using the Common European Framework of Reference (CEFR)

(Council of Europe, 2001). Since the ZAEBUC dataset did not have standard splits, we

randomly split it into Train (70%), Dev (15%), and Test (15%), while keeping a balanced

distribution of CEFR levels. The three sets vary in a number of dimensions: domain,

level, number of words, percentage of erroneous words, and types of errors.

The three sets vary in a number of dimensions: domain, level, number of words,

percentage of erroneous words, and types of errors. Table 5.2 presents automatic error

type distributions over the training portions of the three datasets. Orthographic errors are

more common in the L1 datasets (QALB-2014 and ZAEBUC) compared to the L2 dataset

(QALB-2015), with Hamza errors constituting 30% and 32% of all errors in QALB-2014

and ZAEBUC, respectively. In contrast, morphological, syntactic, and semantic errors

are more common in QALB-2015. Punctuation errors are more common in QALB-
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Dataset Split Lines Words Err. % Level Domain

QALB-2014
Train-L1 19,411 1,021,165 30% Native Comments
Dev-L1 1,017 53,737 31% Native Comments
Test-L1 968 51,285 32% Native Comments

QALB-2015

Train-L1 310 43,353 30% L2 Essays
Dev-L1 154 24,742 29% L2 Essays
Test-L2 158 22,808 27% L2 Essays
Test-L1 920 48,547 29% Native Comments

ZAEBUC
Train-L1 150 25,127 24% Native Essays
Dev-L1 33 5,276 25% Native Essays
Test-L1 31 5,118 26% Native Essays

Table 5.3: Corpus statistics of Arabic GEC datasets.

2014 and QALB-2015, compared with ZAEBUC. However, it is worth noting that the

reported inter-annotator agreement for punctuation correction was relatively low in both

QALB-2014 and 2015 (Mohit et al., 2014a; Zaghouani et al., 2015b), highlighting the

inconsistencies of punctuation usage in Arabic. Moreover, error combinations constitute

4%, 7%, 5% in QALB-2014, QALB-2015, and ZAEBUC, respectively.

5.4.2 Experiments

Evaluation Metrics GEC systems are most commonly evaluated using reference-

based metrics such as the MaxMatch (M2) scorer (Dahlmeier and Ng, 2012), ERRANT

(Bryant et al., 2017), and GLUE (Napoles et al., 2015). In our work, as in Chapter 4

on gender rewriting, we use the M2 scorer because it is language agnostic and was the

main evaluation metric used in previous work on Arabic GEC. The M2 scorer compares

hypothesis edits made by a GEC system against human-annotated reference edits and

calculates the precision (P), recall (R), and F0.5. In terms of GED, we follow previous

work (Bell et al., 2019; Kaneko and Komachi, 2019; Yuan et al., 2021) and use macro

precision (P), recall (R), and F0.5 for evaluation.
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Grammatical Error Detection We build word-level GED classifiers using Transformer-

based pretrained language models. From the many available Arabic monolingual BERT

models (Antoun et al., 2020; Abdul-Mageed et al., 2021a; Lan et al., 2020; Safaya et al.,

2020; Abdelali et al., 2021), we chose to use CAMeLBERT MSA (Inoue et al., 2021), as

it was pretrained on the largest MSA dataset to date.

In our GED modeling experiments, we project multi-token error type annotations to

single-token labels. In the case of a Merge error (many-to-one), we label the first token

as Merge-B (Merge beginning) and all subsequent tokens as Merge-I (Merge inside). For

all other multi-token error types, we repeat the same label for each token. We further

label all deletion errors with a single Delete tag. To reduce the output space of the error

tags, we only model the 14 most frequent error combinations (appearing more than 100

times). We ignore unknown errors when we compute the loss during training; however,

we penalize the models for missing them in the evaluation.

Since the majority of insertion errors are related to missing punctuation marks rather than

missing words (see Table 5.2), and due to inconsistent punctuation error annotations (Mo-

hit et al., 2014b), we exclude insertion errors from our GED modeling and evaluation.

We leave the investigation of insertion errors to future work. The full GED output space

we model consists of 43 error tags (43-Class).

We take advantage of the modularity of the ARETA error tags to conduct multi-class GED

experiments, reducing the 43 error tags to their corresponding 13 main error categories

as well as to a binary space (correct/incorrect). The statistics of the error tags we model

across all datasets are in Table B.5. Figure 5.1 shows an example of error types at

different granularity levels.
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Grammatical Error Correction We explore different variants of the above-mentioned

Seq2Seq models. For each model, we study the effects of applying morphological

preprocessing (+Morph), providing GED tags as auxiliary input (+GED), or both

(+Morph+GED). Applying morphological preprocessing simply means correcting the

erroneous input using the morphological disambiguator before training and inference.

When applying morphological preprocessing and providing GED tags to the models

(+Morph+GED), both the GED and GEC systems are trained and tested on morphologi-

cally preprocessed text. To increase the robustness of the models that take GED tags as

auxiliary input, we use predicted (not gold) GED tags when we train the GEC systems.

For each dataset, we run its respective GED model on the same training data it was

trained on and we pick the predictions of the worst checkpoint. During inference, we

resolve merge and delete errors before feeding erroneous sentences to the model. This

experimental setup yields the best performance across all GEC models.

To ensure fair comparison to previous work on Arabic GEC, we follow the same

constraints that were introduced in the QALB-2014 and QALB-2015 shared tasks:

systems tested on QALB-2014 are only allowed to use the QALB-2014 training data,

whereas systems tested on QALB-2015 are allowed to use the QALB-2014 and QALB-

2015 training data. For ZAEBUC, we train our systems on the combinations of the three

training datasets. We report our results in terms of precision (P), recall (R), F1, and F0.5.

It is worth noting that F1 was the official metric used in the QALB-2014 and QALB-2015

shared tasks. However, we follow the most recent work on GEC and use F0.5 (weighing

precision twice as much as recall) as our main evaluation metric.
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43-Class 13-Class 2-Class

P R F0.5 Acc. P R F0.5 Acc. P R F0.5 Acc.

QALB-2014 Dev-L1 56.7 48.4 53.3 94.1 69.0 58.7 65.3 94.7 95.8 92.7 95.1 96.1
Test-L1 55.0 45.5 50.6 93.6 58.1 54.2 56.8 94.1 95.4 91.5 94.5 95.5

QALB-2015
Dev-L2 39.0 35.0 36.9 84.5 55.1 47.3 51.7 85.3 87.0 80.4 85.2 88.9
Test-L1 51.8 45.3 49.4 95.6 66.5 56.2 60.7 89.9 96.2 93.9 95.7 96.7
Test-L2 37.0 35.4 35.8 85.5 52.8 48.6 51.0 94.9 88.6 81.3 86.6 86.5

ZAEBUC Dev-L1 50.9 43.7 47.5 92.6 57.1 52.9 55.7 93.3 95.7 92.8 95.1 95.5
Test-L1 54.9 43.3 49.8 91.9 69.2 56.6 62.4 92.6 95.5 92.5 94.8 95.2

Table 5.4: GED results on the Dev and Test sets in terms of macro precision, recall, F0.5,
and accuracy.

5.4.3 Results

GED Results

Table 5.4 presents the GED granularity results. Unsurprisingly, all numbers go up when

we model fewer error types. However, modeling more error types does not significantly

worsen the performance in terms of error detection accuracy. It seems that all systems

are capable of detecting comparable numbers of errors despite the number of classes, but

the verbose systems struggle with detecting the specific class labels.

GEC Results

Table 5.5 presents the GEC results on the Dev sets.

Baselines The Morph system which did not use any training data constitutes a solid

baseline for mostly addressing the noise in Arabic spelling. The MLE system claims the

highest precision of all compared systems, but it suffers from low recall as expected.

LLMs We present the LLMs results using their best setups, optimized for average F0.5

across all datasets based on the prompt language and strategy (0-shot vs. 5-shot). Full

results are provided in Table B.4 in Appendix B.2. GPT-4o consistently achieves the best
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QALB-2014 QALB-2015 ZAEBUC Avg.

P R F0.5 P R F0.5 P R F0.5 F0.5
B&B (2015) - - - 56.7 34.8 50.4 - - - -
W+ (2018) 80.0 62.5 75.8 - - - - - - -
Morph 76.5 30.6 58.9 56.2 9.4 28.2 78.0 36.9 63.8 50.3
MLE 89.2 41.5 72.5 73.7 20.1 48.0 90.1 55.6 80.1 66.9

+Morph 88.5 44.9 74.1 68.3 22.0 48.0 89.1 61.8 81.9 68.0
Fanar 69.7 63.7 68.4 58.0 40.7 53.5 76.3 73.6 75.8 65.9
Jais-30B-Chat 53.8 44.5 51.6 46.3 19.1 36.0 51.5 29.4 44.8 44.1
GPT-3.5-turbo 70.6 54.8 66.7 59.6 39.6 54.1 70.8 70.3 70.7 63.9
GPT-4o 80.7 65.7 77.2 70.6 49.2 65.0 86.5 76.8 84.3 75.5

+GED2 82.1 62.2 77.2 74.4 41.2 64.0 90.4 72.3 86.1 75.8
AraT5 82.5 66.3 78.6 69.3 39.4 60.2 84.1 67.4 80.1 73.0

+Morph 83.1 65.8 78.9 69.7 40.6 60.9 85.0 71.3 81.8 73.9
+GED43 82.6 67.1 79.0 69.5 41.9 61.4 85.7 66.7 81.0 73.8
+Morph +GED43 83.1 67.9 79.6 68.4 41.5 60.6 85.2 71.2 82.0 74.0

AraBART 83.2 64.9 78.7 68.6 42.6 61.2 87.3 70.6 83.4 74.4
+Morph 82.4 67.2 78.8 68.5 44.3 61.7 87.2 71.6 83.6 74.7
+GED43 83.3 65.9 79.1 68.2 45.3 61.9 87.2 72.9 83.9 75.0
+Morph +GED43 83.4 66.3 79.3 68.2 46.6 62.4 87.3 73.6 84.2 75.3

Table 5.5: GEC results on the Dev sets of QALB-2014, QALB-2015, and ZAEBUC.
B&B (2015) and W+ (2018) refer to Bougares and Bouamor (2015) and Watson et al.
(2018a), respectively. The best overall results are in bold. Results of our best systems are
underlined.

performance across the LLMs on all datasets, surpassing previous work as well as our

MLE and Morph baselines. Notably, GPT-4o also ranks as the top-performing system

overall on QALB-2015 and ZAEBUC. Indicating erroneous words using our binary GED

systems before prompting GPT-4o (GPT-4o + GED2) improves precision but reduces

recall on all datasets. This strategy results in the best performance on ZAEBUC, while

having no effect on QALB-2014 and leading to a drop in performance on QALB-2015.

Although GPT-4o achieves the best performance, these results should be interpreted with

caution, as the model is closed-source and cannot be replicated. Additionally, the lack

of transparency around the training data used to build GPT-4o raises concerns about
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QALB-2014 QALB-2015 ZAEBUC Avg.

P R F0.5 P R F0.5 P R F0.5 F0.5
43-Class 85.5 73.3 82.8 73.9 57.2 69.8 89.8 82.0 88.1 80.2
13-Class 85.4 73.2 82.6 73.5 55.9 69.2 89.4 82.2 87.9 79.9

2-Class 84.2 72.1 81.4 71.6 54.5 67.4 86.6 80.0 85.2 78.0
43-Class 83.4 66.3 79.3 68.2 46.6 62.4 87.3 73.6 84.2 75.3
13-Class 83.9 65.7 79.5 68.0 46.6 62.3 87.6 73.9 84.5 75.4

2-Class 82.5 67.3 79.0 68.3 45.0 61.9 86.0 72.3 82.9 74.6

Table 5.6: GED granularity results when used within the best GEC system on the Dev
sets of QALB-2014, QALB-2015, and ZAEBUC. Results in grey indicate using gold
GEC labels (i.e., Oracle). The best results are in bold.

potential data contamination, making it unclear whether the model has been exposed to

the datasets we test on during training.

Seq2Seq Models AraT5 and AraBART outperform previous work on QALB-2014 and

QALB-2015, with AraBART being the better model on average.

Does morphological preprocessing improve Arabic GEC? Across all models (MLE,

AraT5, and AraBART), training and testing on morphologically preprocessed text im-

proves the performance, except for MLE+Morph on QALB-2015 where there is no

change in F0.5.

Does GED help Arabic GEC? We start off by using the most fine-grained GED

model (43-Class) to exploit the full effect of the ARETA GED tags and to guide our

choice between AraBART and AraT5. Using GED as an auxiliary input in both AraT5

and AraBART improves the results across all three Dev sets, with AraBART+GED

demonstrating superior performance compared to the other models, on average. Applying

morphological preprocessing as well as using GED as an auxiliary input yields the

best performance across the three Dev sets, except for QALB-2015 in the case of

AraT5+Morph+GED. Overall, among our models, AraBART+Morph+GED achieves

the best average performance in terms of F0.5.. The improvements using GED with GEC
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systems are mostly due to recall. To study the effect of GED granularity on GEC, we

train two additional AraBART+Morph+GED models with 13-Class and 2-Class GED

tags.

The results in Table 5.6 show that 13-Class GED was best in QALB-2014 and ZAEBUC,

whereas 43-Class GED was best in QALB-2015 in terms of F0.5. However, in terms of

precision and recall, GED models with different granularity behave differently across

the three Dev sets. On average, using any GED granularity improves over AraBART,

with 13-Class GED yielding the best results, although it is only 0.1 higher than 43-Class

GED in terms of F0.5. For completeness, we further estimate an oracle upper bound by

using gold GED tags with different granularity. The results (in Table 5.6) show that

using GED with different granularity improves the results considerably. This indicates

that GED is providing the GEC system with additional information; however, the main

bottleneck is the GED prediction reliability as opposed to GED granularity. Improving

GED predictions will most likely lead to better GEC results.

Test Results Table 5.7 presents the Test results. GPT-4o outperforms previous work on

QALB-2014, QALB-2015-L1, and QALB-2015-L2. Incorporating GED predictions by

marking erroneous words further improves its performance on QALB-2015-L1, QALB-

2015-L2, and ZAEBUC. Notably, it is the best-performing system overall on QALB-

2015-L2 and ZAEBUC. However, as previously noted, its results should be interpreted

with caution due to the model’s closed nature and potential data contamination concerns.

Turning to our models, we observe that different GED granularity levels yield optimal

results across the three Dev sets when combined with AraBART+Morph. Therefore,

we evaluate all GED variants on the Test sets. On QALB-2014, using Morph, GED,

or both improves the results over AraBART, except for 2-Class GED. AraBART+43-
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QALB-2014 QALB-2015-L1 QALB-2015-L2 ZAEBUC Avg.
P R F0.5 P R F0.5 P R F0.5 P R F0.5 F0.5

B&B (2015) - - - - - - 54.1 33.3 48.1 - - - -
S+ (2022) 79.1 65.8 76.0 78.4 70.4 76.6 - - - - - - -
GPT-4o 81.5 65.5 77.7 81.1 74.3 79.6 69.1 50.0 64.2 84.4 75.9 82.5 76.0

+GED2 82.9 62.0 77.7 82.8 71.1 80.2 75.2 42.5 65.1 89.0 73.2 85.3 77.1
AraBART 84.0 64.7 79.3 82.0 71.7 79.7 69.6 43.5 62.1 86.0 71.6 82.7 75.9

+Morph 83.3 67.4 79.5 81.7 73.0 79.8 68.7 43.6 61.6 85.3 71.8 82.3 75.8
+GED43 84.2 65.4 79.6 81.2 72.4 79.3 69.0 45.4 62.5 85.4 72.6 82.5 76.0
+Morph+GED43 83.9 65.7 79.5 82.6 72.1 80.3 67.6 45.2 61.5 85.4 73.7 82.7 76.0
+GED13 84.1 65.0 79.4 81.5 72.7 79.5 69.3 44.9 62.5 85.9 73.4 83.1 76.1
+Morph+GED13 83.9 65.3 79.4 81.1 73.4 79.5 68.2 44.8 61.8 85.2 73.7 82.6 75.8
+GED2 83.8 64.5 79.1 81.4 71.5 79.2 69.1 44.9 62.4 85.7 71.5 82.4 75.8
+Morph+GED2 83.0 67.0 79.2 81.3 73.8 79.7 68.1 45.3 61.9 85.7 72.4 82.7 75.9

Table 5.7: GED granularity results when used within GEC on the Test sets of QALB-
2014, QALB-2015, and ZAEBUC. B&B (2015) and S+ (2022) refer to Bougares and
Bouamor (2015) and Solyman et al. (2022), respectively. The best overall results are in
bold. Results of our best systems are underlined.

Class GED is the best performer with a 0.3 increase in F0.5, although this difference is

not statistically significant. Statistical significance was determined using a two-sided

approximate randomization test (Graham et al., 2014; Dror et al., 2018). It is worth

noting that AraBART+Morph achieves the highest recall on QALB-2014 (2.7 increase

over AraBART and statistically significant at p < 0.05).

For QALB-2015-L1, using GED by itself across all granularity did not improve over

AraBART, but when combined with Morph, the 43-Class GED model yields the best

performance in F0.5 (0.6 increase statistically significant at p < 0.05). When it comes

to QALB-2015-L2, Morph does not help, but using GED alone improves the results

over AraBART, with 43-Class and 13-Class GED being the best (0.4 increase). Lastly,

in ZAEBUC, Morph does not help, but using 13-Class GED by itself improves over

AraBART (0.4 increase). Overall, all the improvements we observe are attributed to

recall, which is consistent with the Dev results.
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QALB-2014 QALB-2015 ZAEBUC

AraBART Best System AraBART Best System AraBART Best System
Delete 39.8 40.6 33.0 36.4 47.5 51.9
Merge-B 91.2 93.1 84.2 86.0 96.7 96.7
Merge-I 91.0 93.1 83.7 85.8 96.7 96.7
M 25.5 28.4 37.0 40.8 48.9 48.6
M+O 54.8 37.7 17.2 15.2 100.0 55.6
O 94.1 94.4 80.2 80.1 93.9 94.3
O+X 67.7 73.9 0.0 0.0 0.0 0.0
P 76.2 77.3 64.8 63.5 66.8 62.8
S 43.7 45.3 33.2 31.9 36.1 40.4
X 59.6 62.3 58.4 63.7 69.5 71.2
Split 88.0 87.4 78.9 78.9 88.2 88.2
UNK 49.8 56.1 35.0 31.6 55.0 63.1
C 96.3 96.8 90.3 91.3 95.4 96.1
Macro Avg 67.5 68.2 53.5 54.3 68.8 66.6

Table 5.8: Specific error type performance of AraBART and our best system on the Dev
sets of QALB-2014, QALB-2015, and ZAEBUC. Results are reported in terms of F0.5.
The best results are in bold.

5.4.4 Error Analysis

To investigate which error types benefit from using GED information within GEC, we

perform a detail error analysis over Dev sets. Table 5.8 presents specific error type

performance of AraBART (baseline) and our best system (AraBART+Morph+GED13).

Our best system is the better performer on average in QALB-2014 and QALB-2015 but

not in ZAEBUC. However, in the case of ZAEBUC, it is worth noting that AraBART’s

2.2 average macro F0.5 improvements over our best system is coming from fixing the

M+O errors, which only appeared once in the ZAEBUC Dev set.
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5.5 Summary

In this chapter, we conducted a comprehensive study on MSA GEC. We presented the

first results using Transformer-based pretrained Seq2Seq models and benchmarked both

open-source Arabic-centric and commercial LLMs. We introduced the task of multi-

class MSA GED and showed that incorporating GED predictions as auxiliary input

improves GEC performance for both Seq2Seq models and LLMs. This demonstrates the

importance of control in tasks where the input and output are largely similar, such as

GEC, as explicitly modeling error types guides both model families toward more precise

corrections. Additionally, we explored the role of contextual morphological preprocessing

in improving error correction within Seq2Seq models. Our models achieved SOTA results

on two Arabic GEC shared task datasets and established a strong benchmark on a recently

created dataset. Finally, while commercial LLMs such as GPT-4o achieved impressive

performance, these results should be interpreted with caution due to the closed nature of

these models and the lack of transparency around their training data, raising concerns

about reproducibility and potential data contamination.
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Chapter 6

Dialectal Text Normalization

Dialectal Arabic is the primary spoken language used by native Arabic speakers in

daily communication. With the rise of social media, its use in written form has grown

significantly. However, the absence of standardized orthographies for Arabic dialects,

coupled with the inherent noise in user-generated content, poses major challenges for

NLP applications dealing with Dialectal Arabic. In this chapter, we present a comprehen-

sive study on the final language generation task explored in this dissertation: dialectal

text normalization. This task, known as CODAfication, involves normalizing Dialectal

Arabic into the Conventional Orthography for Dialectal Arabic (CODA). Similar to

GEC, we benchmark pretrained Seq2Seq models on CODAfication and demonstrate that

conditioning these models on dialect identification predictions enhances performance.

Additionally, we benchmark open-source and commercial LLMs to assess their perfor-

mance on CODAfication. We present results using a unique parallel corpus covering

multiple Arabic dialects, focusing on five cities: Beirut, Cairo, Doha, Rabat, and Tunis.
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6.1 Introduction

Arabic exhibits a diglossic (Ferguson, 1959) linguistic situation where a non-standard

variety, Dialectal Arabic (DA), coexists with Modern Standard Arabic (MSA), the

standard form of the language. Complicating matters, DA consists of multiple regional

dialects, such as Egyptian, North African, Levantine, and Gulf Arabic, that differ from

both MSA and each other in phonology, morphology, and lexicon (§2.1). While primarily

spoken, DA has increasingly been used in written form on social media, where the lack

of a standardized orthography (Habash et al., 2018) leads to highly variable and noisy

text. This high degree of noise poses major challenges for NLP systems as it increases

data sparsity. Such noise can be handled using modeling techniques that normalize DA

if it is used as an input to the system, e.g., in machine translation from dialects to other

languages. However, challenges arise when the dialect itself is the desired output, for

example, in automatic speech recognition systems (Ali et al., 2019; Sahyoun and Shehata,

2023). Consequently, evaluating and optimizing these systems can become problematic.

To mitigate the lack of orthographic standards for DA, several efforts in Arabic NLP

introduced a common convention for DA spelling, named Conventional Orthography for

Dialectal Arabic (CODA) (Habash et al., 2012a, 2018). However, CODA has largely been

treated as a secondary task in areas such as morphological disambiguation, diacritization,

and lemmatization, rather than as a main, primary task.

In our work, we explore the task of CODAfication, normalizing DA text into the

CODA convention as a standalone task. We work with a unique parallel corpus of multiple

Arabic dialects (Eryani et al., 2020), focusing on five cities: Beirut, Cairo, Doha, Rabat,

and Tunis. We benchmark pretrained Seq2Seq models and LLMs on CODAfication and

show that conditioning Seq2Seq models on dialect identification predictions improves
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CODAfification performance. Formally, given a dialectal Arabic sentence X and its

corresponding dialect D, the task is to generate the CODAfied version Y according to:

P (Y |X,D) =
nY

t=1

P (yt|y1, ..., yt�1, X,D)

6.2 Background and Related Work

Dialectal Arabic Text Normalization

DA NLP research has been receiving a considerable amount of attention, mainly due to

the availability of monolingual and multilingual DA corpora (McNeil and Faiza, 2011;

Zaidan and Callison-Burch, 2011; Zbib et al., 2012; Cotterell and Callison-Burch, 2014;

Jeblee et al., 2014; Al-Badrashiny and Diab, 2016; Zaghouani and Charfi, 2018b; Abdul-

Mageed et al., 2018a; Bouamor et al., 2019). While MSA has well-defined orthographic

standards, none of the Arabic dialects do today. As a result, almost all DA corpora were

created without following any spelling conventions or standards, which are necessary for

building robust DA NLP applications, e.g., machine translation (Erdmann et al., 2017).

To mitigate this problem, several efforts have been introduced to standardize and de-

velop orthographic conventions for Arabic dialects. Habash et al. (2012a) introduced the

Conventional Orthography for Dialectal Arabic (CODA), the very first attempt to create

guidelines and spelling conventions for Egyptian Arabic orthography. The convenience

CODA offered by providing a standardized orthography led to the creation of many

CODA extensions covering various dialects including Tunisian, Algerian, Palestinian,

Moroccan, Yemeni, and Gulf Arabic (Zribi et al., 2014; Saadane and Habash, 2015; Jarrar

et al., 2016; Turki et al., 2016; Khalifa et al., 2018). Each of these extensions tended to
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curate its own list of exceptional spellings for closed class words. Habash et al. (2018)

introduced a unified set of guidelines for Arabic Dialect orthography – dubbed CODA*

(CODA Star). CODA has been used in the creation of a number of resources for DA

NLP (Habash et al., 2012b; Eskander et al., 2013; Maamouri et al., 2014; Diab et al.,

2014; Pasha et al., 2014b; Jarrar et al., 2016; Khalifa et al., 2018; Eryani et al., 2020).

Most relevant to this paper is the work of Eryani et al. (2020) who extended a portion

of the MADAR Corpus (Bouamor et al., 2018) to create the MADAR CODA Corpus, a

collection of 10,000 sentences from five Arabic city dialects (Beirut, Cairo, Doha, Rabat,

and Tunis) represented in the CODA standard in parallel with their original raw form.

We use this corpus to train and test our models.

In terms of modeling approaches to CODAfication, the first work was proposed by

Eskander et al. (2013) where they introduced CODAFY, a feature-based machine learning

classifier to normalize Egyptian Arabic into CODA. Al-Badrashiny et al. (2014) and

Shazal et al. (2020) targeted CODA output for dialectal Arabizi (Romanized Arabic)

input. Most other approaches attempted to normalize DA texts into CODA as part of

morphological analysis and disambiguation (Pasha et al., 2014a; Zalmout et al., 2018;

Khalifa et al., 2020; Zalmout and Habash, 2020; Obeid et al., 2022). Our work is most

similar to the one of Eskander et al. (2013) where we consider the task of CODAfication

as a standalone text normalization task.

There has been some work on normalizing DA into MSA (Shaalan et al., 2007;

Salloum and Habash, 2011, 2012; Alnajjar and Hämäläinen, 2024). While all this work

is similar to ours in that dialectal input is processed, our output is still dialectal and

not in MSA. Moreover, CODAfication has some similarities to GEC for MSA (§5).

However, CODAfication is different from GEC for MSA since GEC assumes a standard

orthography that the writer is also assumed to aim for.
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Dialect Identification

Dialect Identification (DID) is the task of determining the dialect of a given speech

or text fragment (Etman and Beex, 2015). As informal conversations in both real-

world and online settings are predominantly conducted DA, there has been a growing

interest in developing and scaling automatic Arabic DID systems. This is reflected in

the organization of multiple shared tasks (Malmasi et al., 2016; Zampieri et al., 2017,

2018; Bouamor et al., 2019; Abdul-Mageed et al., 2021b, 2022, 2023, 2024). In terms

of datasets, several mono-dialectal corpora covering different Arabic dialects were built

and made available (Gadalla et al., 1997; Diab et al., 2010; Zaidan and Callison-Burch,

2011; Al-Sabbagh and Girju, 2012; Sadat et al., 2014; Smaïli et al., 2014; Cotterell and

Callison-Burch, 2014; Jarrar et al., 2016; Khalifa et al., 2016b; Al-Twairesh et al., 2018;

El-Haj, 2020). Over time, datasets have expanded to include multi-dialectal resources

at various levels of granularity, such as region, country, province, and city (McNeil and

Faiza, 2011; Zaidan and Callison-Burch, 2014; Elfardy et al., 2014; Bouamor et al., 2014;

Salama et al., 2014; Abdul-Mageed et al., 2018b; Bouamor et al., 2018; Zaghouani and

Charfi, 2018a). More recently, research has shown that many instances in existing DID

datasets could have multiple labels as opposed to a single label (Keleg and Magdy, 2023).

This has led to the development of metrics that assess the degree of dialectness in Arabic

text, moving beyond single-label classification (Keleg et al., 2023).

Besides its obvious use for profiling (Rangel et al., 2019), DA identification has

proven beneficial for various NLP tasks, including machine translation (Salloum et al.,

2014), code-switching detection (Elfardy et al., 2014; Solorio et al., 2014; Molina et al.,

2016), and morphological tagging (Obeid et al., 2022). In our work, we leverage sentence-

level DID to enhance CODAfication.
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CODA

As discussed earlier (§2.3), DA lacks a standardized orthography, leading speakers to

write words in ways that often reflect either their phonological or etymological character-

istics. This phenomenon, known as spontaneous orthography, means that no spelling of a

dialectal word can be considered strictly “incorrect”. CODA, proposed by (Habash et al.,

2012a) addresses this challenge by proposing a set of guidelines aimed at unifying the

writing of DA, providing a consistent and systematic approach to representing dialectal

variations. CODA* (Habash et al., 2018)–pronounced CODA Star, as in, for any dialect–

consolidates and standardizes several prior dialect-specific CODA conventions (Habash

et al., 2012a; Saadane and Habash, 2015; Turki et al., 2016; Khalifa et al., 2016a; Jarrar

et al., 2016).

CODA*, henceforth CODA, is an internally consistent and coherent convention that

strives to regulate some of the DA natural spelling tendencies in an internally consistent

system and (generally) according to a MSA reference, more or less familiar to everyone.

As (Habash et al., 2018) explain, CODA’s design tries to “strike an optimal balance

between maintaining a level of dialectal uniqueness and establishing conventions based

on MSA-DA similarities,” following a sense that the success of such optimization would

ensure CODA stays easily learnable and seamlessly readable to the average Arabic

speaker without compromising their ability to interpret a written form in their own dialect.

For instance, the Beirut dialect word ¯

⌦

Q
�
⌦

 

´
 

P z�yry /zKi:ri/ ‘small [feminine singular]’ is

written in a form reflective of MSA etymology: ⇣

Ë
Q

�
⌦

 
™ì S�yr~. Other examples of CODA

from the MADAR CODA Corpus (Eryani et al., 2020) appear in Table 6.1. Note that

foreign words pose a particular challenge to CODA due to the ambiguous phonological

signals in the Arabic raw text. Consequently, Eryani et al. (2020) adopted a minimalistic
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Dialect Raw CODA

Beirut

Cairo

Doha

Rabat

Tunis

ĂzA btryd ، tnAn hmbrγr wtnAn Âhwħ . bdy Āxdwn mςy . AðA btryd ، Aθnyn hmbrγr wAθnyn qhwħ . bdy Āxðhn mςy .

Atnyn hAmbwrjr wAtnyn qhwħ ، lw smHt . ςAyzhm tyk AwAy . Aθnyn hAmbrjr wAθnyn qhwħ ، lw smHt . ςAyzhm tyk Awy .

Aθnyn hmbrqr wAθnyn qhwħ ، lw smHt . bAxðhm tyk Awy . Aθnyn hmbrjr wAθnyn qhwħ ، lw smHt . bĀxðhm tyk Awy .

jwj hAmbwrγr wjwj qhywAt ، ςAfAk . γAdy ndyhwm mςAyA . jwj hAmbwrγr wjwj qhywAt ، ςAfAk . γAdy ndyhm mςAy .

zwz hmbrγr wzwz qhAwy ، yςyšk . nHb nhzhm mςAyA . zwz hmbrγr wzwz qhAwy ، yςyšk . nHb nhzhm mςAy .

  اذا بتريد ، اثنين همبرغر واثنين قهوة . بدي آخذهن معي .  إزا بتريد ، تنان همبرغر و تنان أهوة . بدي آخدون معي .

  اثنين هامبرجر واثنين قهوة ، لو سمحت . عايزهم تيك اوي .  اتنين هامبورجر و اتنين قهوة ، لوسمحت . عايزهم تيك اواي .

  اثنين همبرجر واثنين قهوة ، لو سمحت . بآخذهم تيك اوي .  اثنين همبرقر واثنين قهوة ، لو سمحت . باخذهم تيك اوي .

  جوج هامبورغر وجوج قهيوات ، عافاك . غادي نديهم معاي .  جوج هامبورغر و جوج قهيوات ، عافاك . غادي نديهوم معايا .

  زوز همبرغر وزوز قهاوي ، يعيشك . نحب نهزهم معاي .  زوز همبرغر وزوز قهاوي ، يعيشك . نحب نهزهم معايا .

Table 6.1: An example sentence from the MADAR CODA Corpus in its raw and CODA
parallel forms across five city dialects. The DA sentences are provided along with their
transliterations in the HSB scheme (Habash et al., 2007). The sentence in the table can
be translated as “We would like two hamburgers and two coffees. To go, please.”

strategy for CODAfying these words, resulting in some plausible but inconsistent variants.

For example, the word for ‘hamburger’ in Table 6.1 appears as both Q

 

´
Q

�
.
“Î hmbr�r and

Qk
.

Q
�
.
“Î hmbrjr.

6.3 Approach

We frame the CODAfication task as a controlled text generation problem. Formally,

given a dialectal input sentence X and its dialect D, the goal is to generate the CODAfied

sentence Y according to P (Y |X,D). One way to condition text generation models on

the desired dialect, D, is to represent it as a special “control” token appended to the input

sequence [D;X], which acts as a side constraint (Sennrich et al., 2016a). In Seq2Seq

models, this allows the encoder to learn a representation for this token as any other token

in its vocabulary, and the decoder attends to this representation to guide the generation of

the output sequence. This is similar to what we did in the joint gender rewriting modeling

experiments (§4.4.1) discussed in Chapter 4. This simple strategy has also been used

in various controlled text generation tasks such as machine translation (Sennrich et al.,
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Dialect City MSA Phrase DA Phrase Digit

Beirut

Cairo

Doha

Rabat

Tunis

byrwt fy byrwt nqwl fy byrwt mnqwl

AlqAhrħ fy AlqAhrħ nqwl fy AlqAhrħ bnqwl

AldwHħ fy AldwHħ nqwl

AlrbAT fy AlrbAT nqwl fy AlrbAT knqwlw

twns fy twns nqwl fy twns nqwlw

1

2

3

4

5

fy AldwHħ nqwl

  في  بيروت  منقول  في  بيروت  نقول  بيروت

  في  القاهرة  بنقول  في  القاهرة  نقول  القاهرة

  في  الدوحة  نقول  في  الدوحة  نقول  الدوحة

  في  الرباط  كنقولو  في  الرباط  نقول  الرباط

  في  تونس  نقولو  في  تونس  نقول  تونس

Table 6.2: The four different types of control tokens we use in our experiments.

2016b; Sennrich and Haddow, 2016; Johnson et al., 2016; Agrawal and Carpuat, 2019),

style transfer (Niu et al., 2017, 2018), and text simplification (Yanamoto et al., 2022;

Agrawal and Carpuat, 2023).

Just like our experiments in GEC, we experiment with both AraBART (Kamal Eddine

et al., 2022) and AraT5-v2 (Nagoudi et al., 2022; Elmadany et al., 2023). We explore

using four different control tokens to pass the dialect information to the models. Table 6.2

presents the control tokens we considered in our experiments:

• City: The name of the city where the Arabic dialect is spoken.

• MSA Phrase: An MSA phrase that follows the template » Ò

⇣

Æ

 

K <city> ˙

⌦

 

Ø

(‘in <city> we say’), where <city> represents one of the five cities whose dialects

we are modeling.

• DA Phrase: A DA phrase that follows the template <we-say> <city> ˙

⌦

 

Ø

(‘in <city> we say’), where <city> represents one of the five dialects we are

modeling, and <we-say> represents a spontaneous orthography of the dialectal

version of the phrase ‘we say’.
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• Digit: An ad hoc unique numerical value for each dialect.

During training, we use the gold dialect for each sentence to induce its control tokens. To

obtain the dialect during inference, we use the DID system that is available in CAMeL

Tools (Obeid et al., 2020). The system is an implementation of Salameh et al. (2018)’s

best-performing model on the MADAR shared task on DID (Bouamor et al., 2019). The

system models DID for the five city dialects and MSA.

6.4 Experimental Setup

6.4.1 Data

We use the manually annotated MADAR CODA Corpus (Eryani et al., 2020), a collection

of 10,000 sentences from five Arabic city dialects (Beirut, Cairo, Doha, Rabat, and Tunis)

represented in the CODA standard in parallel with their original raw form. The sentences

come from the Multi-Arabic Dialect Applications and Resources (MADAR) Project

(Bouamor et al., 2018) and are in parallel across the cities (2,000 sentences from each

city).

The corpus is originally split into train and test, with each split consisting of 5,000

parallel sentences (1,000 per dialect). In our setup, we combine the original train and

test splits and then divide the data randomly into separate training (Train), development

(Dev), and testing (Test) sets. We use a 70/15/15 split, resulting in 1400, 300, and 300

sentences, respectively, per dialect. In total, we end up with 7,000 sentences for Train,

1,500 for Dev, and 1,500 for Test. Table 6.1 shows an example of a sentence from the

corpus in its raw and CODA parallel forms across the five city dialects.

Table 6.3 presents the top 10 character-level edit changes from raw text to CODA in

the five city dialects. It is noteworthy that while there are many shared transformations,
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BEI CAI DOH RAB TUN
RAW CODA FREQ RAW CODA FREQ RAW CODA FREQ RAW CODA FREQ RAW CODA FREQ

BEI CAI DOH RAB TUN
RAW CODA FREQ RAW CODA FREQ RAW CODA FREQ RAW CODA FREQ RAW CODA FREQ

<SPC> 863 <SPC> 1166 150 548 458 <SPC>
409 608 124 352 288 Â
405 323 82 <SPC> 324 189 Ă
324 257 62 256 <SPC> 175
294 146 33 190 <SPC> 148 t
173 <SPC> 142 31 <SPC> 168 115 w
138 95 <SPC> 28 160 109 d
129 80 25 84 100 A
119 73 23 68 97 θ

<SPC> 106 68 20 67 85 h
q
ð
ý
ħ

<SPC> 863 <SPC> 1166 A 150 548 A 458 y
Â A 409 Â A 608 Â A 124 352 Â A 288 j
Ă A 405 h ħ 323 h 82 <SPC> 324 Ă A 189 Að

A 324 t θ 257 ð Að 62 256 <SPC> 175 tš
t θ 294 Ă A 146 j tš 33 190 <SPC> 148 k

h 173 <SPC> 142 j k 31 <SPC> 168 A ħ 115 <SPC> <SPC>A
w h 138 d ð 95 <SPC>A 28 160 A 109 Ā
Â q 129 ý y 80 A Ā 25 84 l 100 l
d ð 119 A 73 Ă A 23 68 w h 97 n

<SPC> 106 A 68 y j 20 67 n 85

BEI CAI DOH RAB TUN
RAW CODA FREQ RAW CODA FREQ RAW CODA FREQ RAW CODA FREQ RAW CODA FREQ
SPC 863 SPC 1166 A 150 A 548 A 458
Â A 409 Â A 608 Â A 124 A 352 Â A 288
Ă A 405 h ħ 323 h 82 SPC 324 Ă A 189

A 324 t θ 257 ð Að 62 Â A 256 SPC 175
t θ 294 Ă A 146 j tš 33 t θ 190 SPC 148

h 173 SPC 142 j k 31 SPC 168 A ħ 115

w h 138 d ð 95 <SPC>
<SPC>A 28 A ħ 160 A 109

Â q 129 ý y 80 A Ā 25 Ă A 84 l 100
d ð 119 A 73 Ă A 23 d ð 68 w h 97

SPC 106 A 68 y j 20 l 67 n 85

  ا  ا  ا
  أ  ا  أ  ا  ا  أ  ا  أ  ا  أ
  إ  ا  إ  ه  ة  ه  ا  إ

  ا  أ  اذ  ذ  ث  ت  ا
  ت  ث  ت  تش  ج  ا  إ  ث  ت

  و  ة  ا  ك  ج  ه
  د  ا  ة  ا  ا  ذ  د  ه  و
  ا  ل  ا  إ  آ  ا  ي  ى  ق  أ
  ث  ه  و  ذ  د  ا  إ  ا  ذ  د

  ه  ن  ل  ج  ي  ا
  ق
  ذ
  ى
  ة
  ي
  ج
  اذ
  تش
  ك

  ا
  آ
  ل
  ن

  ا        ا        ا           <  >     <  >
  ا     أ        ا     ا     أ     ا     أ     ا     أ   
  ا     إ        <  >  ه        ة     ه     ا     إ   

     <  >  ا     أ     اذ     ذ     ث     ت     ا      
  <  >     ث     ت     تش     ج     ا     إ     ث     ت   
  ة     ا     <  >     ك     ج     <  >     ه      

     ا     ة     ا     ا     ذ     د     ه     و   

  ل        ا     إ     آ     ا     ي     ى     ق     أ   
  ه     و     ذ     د     ا     إ     ا        ذ     د   
  ن        ل        ج     ي        ا     <  >   

Table 6.3: The top 10 character edit transformations from raw to CODA in the entire
MADAR CODA dataset across the five dialects. <SPC> indicates an explicit white
space; whereas an empty cell indicates a null string.

they appear with different distributions. This suggests that a model making use of DID

could learn dialect-specific preferences. At the same time, the shared phenomena can aid

in learning dialect-independent general patterns.

6.4.2 Experiments

Evaluation Metrics Just like we did in Chapters 4 and 5, we use the MaxMatch (M2)

scorer (Dahlmeier and Ng, 2012) to assess the edits made by the system against the ‘gold

standard’ edits in the target CODA, calculating precision (P), recall (R), and F0.5 scores.

Baselines The first baseline simply copies the input sentences to the output (Do Noth-

ing). This baseline highlights the level of similarity between the inputs and outputs. For

the second baseline, we build a simple word-level lookup model to map input words to

their CODAfied versions. We first obtain word-level alignments over all the training

data from all the dialects (Joint) by using the algorithm introduced in §5.3.1. We then

exploit the alignments to implement the lookup model as a bigram maximum likelihood
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estimator: given an input word with its bigram surrounding context (wi, wi�1), and a

CODAfied target word (yi), the model is built by computing P (yi|wi, wi�1) over the

training examples. During inference, we generate all possible alternatives for the given

input word (wi). If the bigram context (wi, wi�1) was not observed in the training data,

we backoff to a unigram context. If the input word was not observed during training, we

pass it to the output as it is.

LLMs Similar to Chapters 4 and 5, we evaluate four LLMs: two commercial models

(OpenAI’s GPT-3.5-turbo and GPT-4o (OpenAI et al., 2024)) and two open-source,

Arabic-centric models (Jais-30B-Chat (Sengupta et al., 2023) and Fanar LLM (Team

et al., 2025)). We use both English and Arabic prompts with 0-shot and 5-shot strategies.

Additionally, we experiment with dialect-aware prompting (DAP), where the LLM

is prompted with dialect-specific examples and an explicit dialect tag; in this setup,

inference is performed separately for each dialect, and predictions are later aggregated

for evaluation. Our prompts are presented in Tables C.1, C.2, and C.3 in Appendix C.1.

Seq2Seq Models We train both AraBART and AraT5 on all the dialects’ training data

jointly with and without using DID information. We refer to this modeling setup as Joint.

Moreover, to examine the effect of the joint dialectal training, we train five separate

models, one for each dialect. During inference, we combine the separate models in

an ensemble setup where we use the DID predictions for each sentence to select the

appropriate model. We refer to this setup as Ensemble.
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6.4.3 Results

Overall Results Table 6.4 shows the results on the Dev set. We present the LLMs

results using their best setups, optimized for average F0.5 across all datasets based on the

prompt language and strategy (0-shot vs. 5-shot). Full results are provided in Table C.4

in Appendix C.2. Among the LLMs, GPT-4o achieves the best performance and benefits

from dialect-aware prompting (GPT-4o+DAP), which improves precision, though not

recall, resulting in a higher F0.5. This suggests that explicitly specifying the dialect in the

prompt can help LLMs better control their outputs. However, despite this improvement,

none of the LLMs surpasses the simple MLE baseline in F0.5, largely due to the MLE’s

strong precision.

Among the Seq2Seq baselines, both AraBART and AraT5 demonstrate superior

performance compared to the MLE model. In terms of training setups, Joint training

outperforms Ensemble models for both AraBART and AraT5, with AraT5 being the

better performer achieving 84.72 F0.5.

When we train the AraBART Joint variants with DID control tokens, the performance

increases compared to the AraBART Joint baseline, except when training with the DA

Phrase DID control token. All the AraT5 Joint variants benefit from training with DID

control tokens compared to the AraT5 baseline, with the City control token being the

best performer with 85.80 F0.5 (1.08 increase over the AraT5 baseline and statistically

significant at p < 0.05). Statistical significance was determined using a two-sided

approximate randomization test (Graham et al., 2014; Dror et al., 2018). Notably, the

AraT5 variants outperform their AraBART counterparts across all experiments. We

suspect this is due to the fact the data used to pretrain AraT5 consisted of a mix of MSA,

DA, and CA compared to only MSA in the case of AraBART’s pretraining.
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Model Training Control Token P R F0.5

Do Nothing - - 100.0 0 0
MLE Joint - 66.8 44.6 60.8
Fanar - - 24.5 28.8 25.2

Jais-30B-Chat - - 12.8 13.4 12.9
GPT-3.5-turbo - - 35.5 29.7 34.1

GPT-4o - - 53.7 54.4 53.8
GPT-4o + DAP - - 57.8 52.9 56.7

AraT5
Joint

- 86.8 77.4 84.7

City 87.6 79.3 85.8
87.5 79.3 85.8

MSA Phrase 87.4 79.1 85.6
87.4 79.1 85.6

DA Phrase 87.3 78.6 85.4
87.3 78.6 85.4

Digit 87.4 79.0 85.6
87.4 79.0 85.6

Ensemble - 85.7 72.8 82.7
85.5 73.1 82.7

AraBART
Joint

- 85.4 74.4 82.9

City 85.7 74.4 83.2
85.6 74.5 83.2

MSA Phrase 85.5 74.5 83.0
85.5 74.5 83.0

DA Phrase 85.0 74.6 82.7
85.0 74.6 82.7

Digit 86.1 74.0 83.4
86.1 74.0 83.4

Ensemble - 84.6 67.9 80.6
84.4 68.5 80.7

Table 6.4: Dev set results for multiple systems. Results in grey indicate using gold DID
labels (i.e., Oracle). Best results are in bold. Best oracle results are underlined.

Since AraT5 performed better than AraBART across all experiments, we present the

results on the Test set using AraT5 and its variants in Table 6.5. Training AraT5 with

the DA Phrase control token yields the best performance on the Test set with 86.29 F0.5

(1.06 increase over the AraT5 baseline and statistically significant at p < 0.05).
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Model Training Control Token P R F0.5

AraT5 Joint

- 87.3 78.0 85.2
City 88.0 78.3 85.9

MSA Phrase 88.2 78.85 86.1
DA Phrase 88.4 79.0 86.3

Digit 87.7 78.3 85.6

Table 6.5: Results on the Test set.

AraT5 (Baseline) AraT5 + City
Dialect P R F0.5 P R F0.5
Beirut 86.1 79.7 84.71 89.3 82.4 87.8
Cairo 89.5 85.4 88.7 89.1 85.4 88.36
Doha 83.5 67.9 79.8 85.3 72.3 82.3
Rabat 85.2 72.7 82.4 86.4 76.0 84.1
Tunis 86.1 70.4 82.4 84.2 71.6 81.3

Table 6.6: Dialect-specific results of the best system (AratT5 + City) against the baseline
(AraT5) on the Dev set.

DID Efficacy We estimate an oracle upper bound by using gold DID labels during

inference on the Dev set (Table 6.4). We do not notice significant improvements across

all variants compared to the models that use predicted DID labels. In some cases, using

gold DID labels results in identical performance to models using predicted labels. This

can be attributed to the robustness of our CODAfication models and the reliability of the

DID system we are using, which achieves a high accuracy of 92.1% on the Dev set.

Most of the prediction errors made by the DID system occur in sentences lacking

distinctive cues that would allow clear assignment to a specific dialect. Therefore, these

errors cannot be considered true errors, but rather stem from the MADAR dataset’s

limitation of not having multi-dialectal labels. This is consistent with the findings of

Keleg and Magdy (2023) where they manually analyzed the errors of a single-label DID

system and found that ⇠66% of the errors are not true errors and could be resolved with

multi-dialect labels.
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AraT5 (Baseline) AraT5 + DA Phrase

Dialect P R F0.5 P R F0.5
Beirut 85.6 78.5 84.1 87.0 80.0 85.5
Cairo 89.7 83.4 88.33 89.6 84.4 88.5
Doha 85.9 70.8 82.4 89.8 73.3 85.9
Rabat 87.1 73.9 84.1 87.3 73.6 84.2
Tunis 86.7 75.6 84.3 89.2 76.6 86.4

Table 6.7: Dialect-specific results of the best system (AratT5 + DA Phrase) against the
baseline (AraT5) on the Test set.

Dialect-Specific Results We present the dialect-specific results on the Dev and Test

sets in Tables 6.6 and 6.7, respectively. Our best system on the Dev set, AraT5 trained

with the City DID control token, improves over the AraT5 baseline for all dialects (with

the largest increase seen for Beirut at 3.11 F0.5), except for Cairo and Tunis, where the

performance drop is attributed to decreased precision rather than recall. This suggests

that our best system may be making unnecessary extra rewrites. On the Test set, our best

system, AraT5 trained with the DA Phrase DID control token, improves over the AraT5

baseline across all dialects, with the largest increase for Doha at 3.58 F0.5.

6.4.4 Error Analysis

To gain insights into the errors present in our best performing system on the Dev set,

we conducted an error analysis on a sample of 100 cases, which accounted for 21% of

the total 471 erroneous instances in the generated output. We classified these errors into

specific categories, with results and examples provided in Table 6.8:

• Non-CODA: These are cases characterized by having plausible spontaneous

spelling but incorrect CODA. This is the largest group of errors.

• Hallucination and Related Hallucination: Hallucinations refer to word rewrites

that are implausible under any circumstance as a CODA correction or non-CODA
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Category % Error CODA
Non-CODA 46% ⇣

IÉ Ym
⇢

⇣

' ⇣
I

⌘

K Ym
⇢

⇣

'

tHdst tHd✓t
Hallucination 19% .

⇣

È

⇣

ÆK
⌦

X .

⇣

È

⇣

ÆJ
⌦

⇣

Ø X

dyq~. dqyq~.
Valid 13% Qk

.
P ÒJ

.
” AÎ Qk

.

Q
�
.
” AÎ

hAmbwrjr hAmbrjr
Deletion 9% ⇣

È ì @ ÈÀ …ì @

AwSl~ AwSl lh
Related 9%  

Q̈Â
⌘
Ö

 

Q̈Â
⌘
ÑÀ @

Hallucination šrf Alšrf
Punctuation 4% ˙

⌦

 

Ê

⇣

J

⇣

K A

 

Ø""""""" ˙

⌦

 

Ê

⇣

J

⇣

K A

 

Ø"""

fAttny""""""" fAttny"""

Table 6.8: Distribution of errors in the Dev set with one example per error type.

spelling. We distinguish cases that seem morphologically related to the input

but are actually unrelated forms. We observe that 2/3 of the cases were largely

unrelated to the reference.

• Valid: This category encompasses valid alternative spellings, particularly those

associated with proper nouns and foreign words.

• Deletion: Deletions refer to omitted words. 55.6% of these are non-CODA

spellings, e.g., a missed split (Table 6.8 example), while the rest are divided

between gold errors and hallucinations.

• Punctuation: Punctuation generation errors.

The error analysis highlights that CODA issues constitute a significant portion of the

remaining errors, potentially accounting for half of the cases between non-CODA words

and deletions. Hallucinations, whether minor or severe, make up nearly a third of the

errors. This suggests the need for more training data and improved models to address

these problems. The presence of valid variants, which represent one-eighth of the errors,

indicates the need to adopt a multi-reference approach for text normalization evaluation.
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6.5 Summary

In this chapter, we presented a study on CODAfication, the task of normalizing Dialectal

Arabic (DA) text into the Conventional Orthography for Dialectal Arabic (CODA). We

benchmarked Arabic pretrained Seq2Seq models and LLMs on the task of CODAfication.

We demonstrated that conditioning these models on dialect identification information

significantly improves normalization performance. We reported results on a unique

parallel corpus covering multiple Arabic dialects, focusing on five cities: Beirut, Cairo,

Doha, Rabat, and Tunis.
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Chapter 7

Text Editing

So far, this dissertation has introduced and explored three Arabic NLG tasks: gender

rewriting, grammatical error correction, and dialectal text normalization. Across these

tasks, our controlled NLG approaches have relied on an explicit identification step to

extract linguistic traits, such as gender, error types, or dialect, which are then used to

condition generation models. In this final chapter, we introduce a novel, unified text

editing framework that reframes all three tasks as sequence tagging problems. Instead of

generating text autoregressively, our approach assigns edit tags to input tokens, and ap-

plying these tags transforms the input into the desired output, ultimately combining both

identification and generation into a single step. These edit tags are automatically derived

from data, eliminating the need for hand-crafted or language-specific edit operations.

We show that this text editing approach achieves state-of-the-art or highly competitive

performance across all three tasks, surpassing prior models on most benchmarks, and

offering substantial efficiency gains. Furthermore, we explore ensemble strategies and

show that combining different models can lead to further performance improvements

across tasks.
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7.1 Introduction

Neural Seq2Seq models offer a powerful framework for translating source texts into

target texts (§3.1.3). Since their introduction in machine translation (MT) (Sutskever

et al., 2014), they have become the standard approach for nearly all conditional text

generation tasks. Raffel et al. (2020) further demonstrated that even tasks not traditionally

framed as sequence transduction problems can benefit from large-scale pretraining when

reformulated in the Seq2Seq paradigm. However, for tasks like those explored in this

dissertation, gender rewriting, grammatical error correction (GEC), and dialectal text

normalization (CODAfication), the input and output often share substantial overlap. In

such cases, using a full-sequence autoregressive model can be inefficient, as most tokens

are simply copied from the input to the output.

A highly efficient and competitive alternative to Seq2Seq models is text editing,

which frames generation tasks sequence tagging problems. Text editing is tailored

towards problems that require only small changes to the input. Rather than generating

the target sentence autoregressively as a series of tokens, text editing models predict a

sequence of edit operations that, when applied to the source sentence, yields the target

sentence. However, most commonly used sequence tagging approaches require effort to

design language-specific edit tag sets (Awasthi et al., 2019; Omelianchuk et al., 2020;

Mesham et al., 2023). This limits the adaptability of current text editing approaches for

morphologically rich languages like Arabic (Kwon et al., 2023), where the number of

possible edits can be vast.

In this chapter, inspired by recent advancements in text editing (Awasthi et al., 2019;

Malmi et al., 2019; Omelianchuk et al., 2020; Straka et al., 2021; Mesham et al., 2023),

we introduce a novel text editing approach that eliminates the need for language-specific
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edits. Instead, our method derives edit tags directly from data, making it more adaptable

and scalable across different linguistic settings. We demonstrate the effectiveness of

our approach on the NLG tasks we study in this dissertation: gender rewriting, GEC,

and dialectal text normalization. Our models achieve SOTA or highly competitive

performance across all three tasks, surpassing prior models on most benchmarks. In

addition to strong performance, they are over six times faster than previously introduced

models, making them more practical for real-world use. Finally, we show that ensemble

strategies can further boost performance, as different models capture complementary

strengths across tasks.

7.2 Background and Related Work

Text editing has gained increasing attention in recent years, especially for tasks like

GEC, due to its efficiency in scenarios where most of the input text remains unchanged.

At the heart of text editing is the process of edit extraction, which aligns input-output

pairs to identify the minimal sequence of operations (e.g., keep, delete, insert, replace)

required to transform the input into the target output. These edit operations are then

assigned to individual tokens, enabling direct generation via tagging. Several approaches

have implemented this framework with varying edit schemes and architectures. Malmi

et al. (2019) introduced LaserTagger, which uses three primary operations (keep, delete,

prepend) and a BERT encoder, optionally paired with an autoregressive decoder. They

demonstrated its effectiveness on tasks such as sentence fusion, splitting, summarization,

and GEC. Around the same time, Awasthi et al. (2019) proposed PIE, a model that uses

a BERT encoder to predict edits (keep, delete, append, and morphological inflections)

without a decoder, and applied it to GEC and OCR post-editing. Building on this work,



101
Omelianchuk et al. (2020) introduced GECToR, expanding the tag set to capture more

complex grammatical transformations, such as verb forms and noun number. Mesham

et al. (2023) extends GECToR further by introducing more general transformation edit

tags. Straka et al. (2021) moved beyond word-level tagging by introducing a character-

level text editing model operating at the subword level, making it especially suited for

morphologically rich languages. They applied their model to English, Czech, German,

and Russian GEC. Beyond token-level approaches, Stahlberg and Kumar (2020) proposed

Seq2Edit, a span-based model leveraging a Seq2Seq architecture and applied it to text

normalization, sentence fusion and splitting, simplification, and GEC. Mallinson et al.

(2022) introduced EDIT5, a semi-autoregressive text editing model that combines the

efficiency of tagging with the flexibility of generation, yielding strong results in low-

resource settings for GEC and sentence fusion.

Despite growing interest in text editing, most existing approaches have been de-

veloped for English, with limited success in applying them to morphologically rich

languages like Arabic. To our knowledge, Kwon et al. (2023) are the only ones to at-

tempt Arabic text editing by adapting GECToR to Modern Standard Arabic (MSA) GEC.

However, their system performed significantly worse than standard Seq2Seq models,

likely due to the challenge of handcrafting edit tags that adequately capture Arabic’s

morphological complexity. In this chapter, we introduce a novel text editing framework

that addresses this limitation by deriving edit tags directly from data, eliminating the

need for predefined, language-specific operations. Our approach is general, scalable,

and particularly well-suited for morphologically rich languages. We demonstrate its

effectiveness across the three Arabic NLG tasks explored in this dissertation: gender

rewriting, GEC, and CODAfication.
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7.3 Approach

We adopt a text editing approach for the three generation tasks explored in this dissertation:

gender rewriting, GEC, and CODAfication. Rather than generating output from scratch,

we frame each task as a sequence tagging problem. Formally, given an input sequence

x = x1, x2, ..., xn, the goal is to assign a sequence of edit operations e = e1, e2, ..., en;

ei 2 E, where E is the edit vocabulary, such that applying edit ei on the input token xi at

each position i would result in the output sequence y = y1, y2, ..., ym.

7.3.1 Edit Extraction

We begin by aligning input and output sentence pairs at the word level using a weighted

Levenshtein edit distance (Levenshtein, 1966), which computes the minimum number

of insertions, deletions, and replacements required to transform the input sentence into

the output, with each edit affecting a single word. However, some transformations span

multiple words. To handle such cases, we follow the approach introduced in §5.3.1 by

extending the alignment process with an iterative algorithm that greedily merges or splits

adjacent words to minimize the overall cumulative edit distance. After obtaining the

word-level alignment, we apply the algorithm again, this time to each aligned word pair

rather than the entire sentence, to determine character-level alignments. This process

identifies the minimal character edits in terms of keep (K), delete (D), merge before (M),

insert (I_[c]), and replace (R_[c]) that are needed to transform each erroneous word into

its correction, where the inserted or replaced character (c) is explicitly specified.

Figure 7.1 presents an example from GEC of an aligned erroneous-corrected sentence

pair along with the corresponding edits. For instance, in row b, the erroneous word

– A“

⇣

JÎ B
�

@ AlǍhtmAm (word 1) requires the edit KKR_[ @]KKKKK (row c) which consists
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Corrected

Erroneous

Word Edits
Word Edits

(Compressed)

Tokenized
Erroneous

Subword Edits
Subword Edits
(Compressed)

(a)

(b)

(c)

(d)

7b 7a 6b 6a 5 4 3b 3a 2 1b 1a 0

(e)

(f)

(g)

7 6 5 4 3 2 1 0
Alnfsyħ AlSHħ symA wlA bAlSHħ AlAhtmAm yjb

Alnfsyh AlSHh fy wlAsymA lSHh b AlĂhtmAm yjb

##h Alnfsy ##h AlSH fy wlAsymA ##h lSH ##htmAm AlĂ yjb

KKKKKKR_[ ]A_[ ] KKKKR_[ ] DD KKKI_[ ]KKKK MI_[ ]KKKR_[ ] K KKR_[ ]KKKKK KKK

K*R_[ ]A_[ ] K*R_[ ] D* KKKI_[ ]K* MI_[ ]K*R_[ ] K* KKR_[ ]K* K*

R_[ ]A_[ ] KKKKKK R_[ ] KKKK DD KKKI_[ ]KKKK R_[ ] MI_[ ]KKK K KKKKK KKR_[ ] KKK

R_[ ]A_[ ] K* R_[ ] K* D* KKKI_[ ]K* R_[ ] MI_[ ]K* K* K* K*R_[ ] K*

.

.

.

.

  يجب  الاهتمام  بالصحة  ولا  سيما  الصحة  النفسية .

  يجب  الإهتمام  ب  لصحه  ولاسيما  في  الصحه  النفسيه

  يجب   الإ  ##هتمام  ب  لصح  ##ه  ولاسيما  في   الصح  ##ه  النفسي   ##ه

  ا  ة  ة  ة

  ا  ة  ة  ة

  ة  ة  ة

  ة  ة  ة

  ا

  ا

  ا  ا

  ا  ا

Figure 7.1: An example showing the different edit representations: words, words (com-
pressed), subwords, and subwords (compressed). The edit operations are keep (K/K*),
delete (D/D*), merge before (M), replace (R_[c]), insert (I_[c]), and append (A_[c]).
Solid lines indicate word alignments between the corrected and erroneous sentences,
while dotted lines denote erroneous subword boundaries. The sentence in the figure can
be translated as “Health, especially mental health, must be taken care of”.

of eight character edits–one replacement and seven keeps–to produce its corrected form

– A“

⇣

JÎ B @ AlAhtmAm. Similarly, ÈjíÀ lSHh (row b, word 3), must be merged with the

word before it, in addition to one insertion and one replacement (MI_[ @]KKKR_[
⇣

Ë],

row c).

In some cases, transformations require the insertion of entirely new characters,

forming additional words in the input. Since we frame the task as a sequence tagging

problem, we represent these insertions as appends (A_[c]) to existing edits rather than

introducing standalone edits. This ensures that all edits, including word insertions, remain

within the tagging framework. For example, to insert a period at the end of the erroneous

sentence in Figure 7.1, we append the tag (A_[.]) to the edit of the final word (row c,

word 7).
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7.3.2 Edit Representation

The edit representation directly influences the size of the edit vocabulary (|E|), creating

an important trade-off: a larger vocabulary offers more precise transformations but

increases model complexity, whereas a smaller vocabulary enhances learning efficiency

at the cost of expressiveness. Controlling |E| is crucial to avoid the explosion of possible

edits, which is particularly important when working with morphologically rich languages

like Arabic. We explore four methods for controlling |E| while maintaining sufficient

coverage.

Edit Compression Once we obtain character-level edits for each word, we compress

them into a more compact representation. The motivation behind this transformation is

that while different words may undergo the same type of correction, their character-level

edits can differ due to variations in word length. For example, in row b of Figure 7.1,

both words 0 and 2 share a keep edit, yet they receive different edit labels because of

their length differences (row c). To address this, we introduce a generalized notation for

common edit patterns. Consecutive keep (K) and delete (D) operations are represented as

K* and D*, respectively. Similarly, consecutive insertions and appends are merged into a

single operation, represented as I_[c*] for insertions and A_[c*] for appends, indicating

the insertion or appending of multiple characters.

Since there are multiple ways to compress an edit sequence, we select the optimal

strategy based on the frequency distribution of edit patterns in the training data. This

approach ensures that the most common transformations are encoded in a way that

balances expressiveness with efficiency, resulting in a more structured and learnable edit

representation.
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Input Unit Since Transformer-based models operate at the subword level, we project

character-level edits onto subwords while maintaining their boundaries to ensure proper

alignment. This not only ensures consistency with the model’s input representation but

also helps reduce the edit vocabulary size. Our approach is inspired by the method of

Straka et al. (2021), but it differs in several key aspects: (1) Straka et al. (2021) tokenize

the erroneous and corrected sentence pairs before aligning them to extract the edits at the

subword level. In contrast, our method extracts edits at the word level and then projects

them onto subwords; (2) They limit the number of character-level edits per subword edit,

while our approach imposes no such restrictions, allowing for broader coverage.

Figure 7.1 presents the subword-level edits in both their uncompressed (row f) and

compressed (row g) forms. In the uncompressed subword-level edits, we observe that

two subwords (3b and 6b in row e), which belong to different words, share the same edit

(R_[ ⇣

Ë]). In the compressed representation, we notice that several subwords–such as 0,

1b, 2, 6a, and 7a–end up sharing the same edit (K*).

Edit Segregation The MSA GEC datasets we report on exhibit high frequencies of

punctuation errors, as detailed in §5.4.1: : 40% in QALB-2014 and 15% in ZAEBUC

training sets. To reduce the number of edits that the MSA GEC models must learn, we

segregate punctuation edits from non-punctuation edits. This results in two versions

of the data: one where only non-punctuation errors are tagged, and another where all

non-punctuation errors are corrected, leaving only punctuation errors for the model to

focus on.This separation is applied only to the MSA GEC datasets, not to APGC v2.0

(gender rewriting) or MADAR CODA (CODAfication). Additionally, this approach

requires training two systems to be applied sequentially during inference: the first system

fixes non-punctuation errors, while the second system addresses only punctuation errors.
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Edit Pruning In tasks like GEC and CODAfication, morphologically rich languages

such as Arabic often exhibit a long tail of infrequent edits in the training data. To improve

the model’s learning ability, we analyze the distribution of edits in the training data for

each task and prune those that occur less frequently than a threshold T , replacing them

with the “keep” edit. This pruning is applied exclusively during training, enabling the

model to focus on frequent and informative edits.

7.3.3 Edits Coverage

QALB-2014 QALB-2015 ZAEBUC
Input Comp. Subset Prune Edits OOV% F0.5 Edits OOV% F0.5 Edits OOV% F0.5
Word % All - 16,221 1.00% 98.4 3,289 5.77% 92.2 1,097 2.94% 96.2
Subword % All - 9,060 0.36% 98.7 2,896 4.33% 92.0 905 1.85% 96.5
Word ! All - 10,410 1.00% 98.4 2,425 5.77% 92.2 687 2.94% 96.2
Subword ! All - 6,170 0.36% 98.7 2,125 4.33% 92.0 563 1.85% 96.5
Subword ! NoPnx - 4,799 0.27% 98.8 1,906 3.93% 91.0 498 1.74% 96.2
Subword ! Pnx - 160 0.01% 99.4 40 0.01% 99.3 23 0.06% 99.9
Subword ! All 10 683 0.75% 98.1 120 6.77% 88.0 58 3.71% 93.9
Subword ! All 20 442 1.02% 97.7 80 7.86% 86.4 35 4.67% 92.6
Subword ! All 30 329 1.24% 97.4 58 8.83% 84.6 27 5.26% 91.8
Subword ! NoPnx 10 520 0.56% 98.2 103 6.15% 86.0 52 3.39% 93.7
Subword ! NoPnx 20 335 0.75% 97.8 71 7.04% 84.1 30 4.31% 92.3
Subword ! NoPnx 30 250 0.92% 97.5 50 7.90% 81.7 22 4.90% 91.4
Subword ! Pnx 10 48 0.02% 99.4 15 0.11% 99.1 6 0.11% 99.9
Subword ! Pnx 20 35 0.05% 99.4 10 0.30% 98.9 6 0.11% 99.9
Subword ! Pnx 30 29 0.05% 99.3 9 0.34% 98.9 6 0.11% 99.9

Table 7.1: Edit statistics on QALB-2014, QALB-2015, and ZAEBUC. Input is the input
unit representation (word or subword). Comp. indicates whether the edit is compressed.
Subset specifies whether the edits capture all errors, punctuation-only errors (Pnx), or
non-punctuation errors (NoPnx). Edits represents the total number of unique edits in
the training set of each dataset. OOV% is the percentage of out-of-vocabulary edits
(non-unique) in the Dev set of each dataset.

Table 7.1 presents edit statistics for the GEC datasets: QALB-2014, QALB-2015, and

ZAEBUC. Table 7.2 shows the corresponding statistics for the CODAfication dataset,
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MADAR CODA APGCv2.0

Input Comp. Prune Edits OOV% F0.5 Edits OOV% F0.5
Word % - 1,228 1.52% 98.0 1,106 0.07% 99.3
Subword % - 677 0.55% 98.1 844 0.05% 99.3
Word ! - 741 1.52% 98.0 588 0.08% 99.3
Subword ! - 454 0.55% 98.1 514 0.07% 99.3
Subword ! 10 84 1.33% 96.2 127 0.12% 98.4
Subword ! 20 52 2.02% 94.1 92 0.17% 97.7
Subword ! 30 45 2.28% 93.4 74 0.21% 97.0

Table 7.2: Edit statistics on MADAR CODA and APGCv2.0. Input is the input unit
representation (word or subword). Comp. indicates whether the edit is compressed.
Edits represents the total number of unique edits in the training set of each dataset.
OOV% is the percentage of out-of-vocabulary edits (non-unique) in the Dev set of each
dataset.

MADAR CODA, and the gender rewriting parallel corpus, APGC v2.0. These tables

illustrate the impact of our strategies to reduce the edit vocabulary size |E| on edit

coverage and upper-bound (oracle) performance on the development (Dev) sets. Edit

coverage measures the proportion of training edits found in the Dev sets, while oracle

performance is evaluated using the MaxMatch (M2) scorer (Dahlmeier and Ng, 2012)

F0.5. We use AraBERTv02 (Antoun et al., 2020) for subword tokenization, as it yielded

the best results among our tested models (more details in §7.4.3).

For the GEC datasets, and specifically QALB-2014, switching from word-level to

subword-level edits reduces unique training edits by 44% (16,221 to 9,060) and lowers

the Dev set OOV rate from 1% to 0.4%, yielding a 0.3-point F0.5 gain. Edit compression

further reduces unique edits while preserving OOV% and oracle performance. Segregat-

ing punctuation (Pnx) from non-punctuation (NoPnx) edits reduces combined training

edits (4,799+160 from 6,170). However, NoPnx results are not directly comparable

since punctuations are explicitly removed before the evaluation. Pnx F0.5 scores are

higher as they are evaluated on a Dev set with non-punctuation errors already corrected,
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making the test easier. To assess the impact of pruning, we apply frequency thresholds

of 10, 20, and 30 to remove low-frequency edits. As expected, pruning reduces the

number of unique training edits and increases the OOV% in the Dev set, yet F0.5 remains

largely unaffected. This suggests that the majority of the 6,170 compressed subword

edits occur infrequently and contribute little to the model’s upper-bound performance.

A similar trend is observed for both Pnx and NoPnx edits, reinforcing the idea that

many low-frequency edits can be pruned without degrading oracle performance. Similar

conclusions hold for the QALB-2015 and ZAEBUC datasets.

For both MADAR CODA and APGC v2.0, we observe similar trends to those found

in the GEC datasets. Switching from word-level to subword-level edits significantly

the number of unique training edits while also lowering the OOV rate on the Dev sets.

However, unlike GEC, the shift to subword-level edits does not lead to improvements

in oracle F0.5 scores, suggesting that the benefits of subword modeling are primarily in

vocabulary compression rather than correction potential. Applying edit compression

further reduces the number of edits without affecting OOV% or F0.5.

7.4 Experimental Setup

7.4.1 Data

We use the same datasets introduced in earlier chapters for each task. For gender rewriting,

we use the Arabic Parallel Gender Corpus v2.0 (APGC v2.0) (§4.3). For GEC, we use

the QALB-2014, QALB-2015, and ZAEBUC datasets (§5.4.1). For CODAfication, we

use the MADAR CODA corpus (§6.4.1).
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7.4.2 Experiments

Baselines For GEC, we compare our text editing approach to the best-performing

vanilla Seq2Seq models introduced in Chapter 5, as well as to enhanced variants that

incorporate morphological preprocessing and are conditioned on grammatical error

detection (GED) predictions (§5.3.2). A similar comparison is made for CODAfication,

where we compare against the top vanilla Seq2Seq model from Chapter 6, along with a

variant conditioned on dialect identification (§6.3). For gender rewriting, we compare

against the joint and the best-performing multi-step rewriting systems introduced in

Chapter 4 (§4.4). For all tasks, we also report results from the strongest LLM setup.

Edit Taggers To investigate the impact of the edit representation design on performance

(§7.3.2), we build several edit taggers with different configurations. For word-level

tagging, we use the representation of the first subword of each word and pass it through

the subsequent layers. For subword-level tagging, we use the representation of each

subword individually. Several Arabic pretrained transformer encoders based on BERT

(Devlin et al., 2019) have been developed (Antoun et al., 2020; Abdul-Mageed et al.,

2021a; Inoue et al., 2021; Ghaddar et al., 2022). We select the three best-performing

Arabic BERT models, as identified by Inoue et al. (2021) across various sentence and

token classification tasks: AraBERTv02 (Antoun et al., 2020), ARBERTv2 (Abdul-

Mageed et al., 2021a), and CAMeLBERT-MSA (Inoue et al., 2021).

Ensembles We construct majority vote ensemble models by aggregating the outputs of

multiple GEC systems. This is enabled by our edit extraction algorithm (§7.3.1), which

allows us to align and extract edits from models with different architectures. Using this

algorithm, we first align each model’s output with the input text, extract the proposed



110
QALB-2014 QALB-2015 ZAEBUC

P R F0.5 P R F0.5 P R F0.5
AraBART 83.2 64.9 78.7 68.6 42.6 61.2 87.3 70.6 83.4
AraT5+Morph+GED43 83.1 67.9 79.6 68.2 46.6 62.4 87.6 73.9 84.5
AraBART+Morph+GED43 83.4 66.3 79.3 68.2 46.6 62.4 87.3 73.6 84.2
AraBART+Morph+GED13 83.9 65.7 79.5 68.0 46.6 62.3 87.6 73.9 84.5
GPT-4o 80.7 65.7 77.2 70.6 49.2 65.0 86.5 76.8 84.3
GPT-4o+GED 82.1 62.2 77.2 74.4 41.2 64.0 90.4 72.3 86.1
SWEET 81.8 68.8 78.8 64.8 40.6 57.9 85.8 72.3 82.7
SWEET2 81.9 70.4 79.3 65.9 43.3 59.7 85.8 73.3 83.0
SWEET2

NoPnx + SWEETPnx 83.7 68.8 80.3 69.6 37.4 59.4 86.7 73.9 83.8
3-Ensemble 84.9 68.8 81.1 74.0 39.9 63.2 89.6 72.8 85.6

+GPT-4o 89.1 61.6 81.8 81.2 33.1 62.9 93.3 68.3 86.9
+GPT-4o+GED 89.4 61.0 81.8 81.3 32.4 62.5 93.3 67.7 86.7

Table 7.3: MSA GEC results on the Dev sets of QALB-2014, QALB-2015, and ZAEBUC.
Best non-ensemble results are underlined. The best overall results are in bold.

edits, and then determine the final edit sequence through majority voting. Following

Tarnavskyi et al. (2022), we retain an edit only if at least k � 1 models out of k models

predict it; otherwise, we leave the input unchanged.

7.4.3 Results

Table 7.3 presents development set results for GEC, while Table 7.4 shows corresponding

results for CODAfication and gender rewriting. Full edit tagging results on the Dev

sets, including experiments with different edit design choices using CAMeLBERT-MSA,

AraBERTv02, and ARBERTv2, are presented in Tables D.2 and D.1 in Appendix D.1.

AraBERTv02 consistently achieves the best performance. For GEC and CODAfication,

using subword-level edits alongside compression and pruning leads to improved results.

The most effective pruning threshold is 10 for QALB-2014, QALB-2015, and MADAR

CODA, and 30 for ZAEBUC. In the case of gender rewriting, AraBERTv02 also performs

best. Although subword-level edits do not outperform word-level edits in this task,
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MADAR CODA APGCv 2.0
P R F0.5 P R F0.5

AraT5 86.8 77.4 84.7 - - -
AraT5+City 87.6 79.3 85.8 - - -
Joint - - - 79.0 79.8 79.1
Multi-Step - - - 88.7 86.8 88.3
GPT-4o 53.7 54.4 53.8 49.2 74.6 52.8
GPT-4o+DAP 57.8 52.9 56.7 - - -
GPT-4o+GID - - - 77.1 77.7 77.2
SWEET 89.1 75.5 86.0 89.7 87.3 89.2
SWEET2 87.5 73.5 84.3 89.7 87.4 89.2
3-Ensemble 91.7 77.4 88.4 91.0 89.1 90.6

+GPT-4o 93.8 72.5 88.6 92.1 86.5 90.9
+GPT-4o+DAP 93.8 72.3 88.6 - - -
+GPT-4o+GID - - - 92.2 86.3 90.9

Table 7.4: CODAfication and gender rewriting results on the Dev sets of MADAR CODA
and APGC v2.0. Best non-ensemble results are underlined, best overall results are in
bold.

applying compression and pruning still proves beneficial, with a pruning threshold of 10

yielding the best results. The optimal setup for each dataset is presented in Tables 7.3

and 7.4. We henceforth refer to this system as SWEET (Subword Edit Error Tagger).

SWEET achieves an F0.5 of 78.8 on QALB-2014, 86.0 on MADAR CODA, and 89.2

on the AGPCv2.0, outperforming AraBART on QALB-2014 and setting a new SOTA

on MADAR CODA and APGC v2.0. On ZAEBUC and QALB-2015, it scores 82.7 and

57.9 F0.5, respectively, trailing behind AraBART. Consistent with previous work on text

editing (Awasthi et al., 2019; Omelianchuk et al., 2020), we find that iterative correction

improves GEC up to two iterations (SWEET2), achieving 79.3 F0.5 on QALB-2014, 59.7

on QALB-2015, and 83.0 on ZAEBUC, with the highest overall recall on QALB-2014

(70.4). However, it degrades CODAfication and does not help gender rewriting.

Separating non-punctuation edits (SWEETNoPnx) from punctuation edits (SWEETPnx)

improves GEC performance on QALB-2014 and ZAEBUC but not QALB-2015. The best
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setup applies these systems in sequence: two iterations of non-punctuation correction

followed by one iteration of punctuation correction (SWEET2
NoPnx + SWEETPnx). This

setup achieves the highest F0.5 score among text editing models, setting a new SOTA on

QALB-2014 with 80.3 (driven by a precision improvement of 83.7). Its performance on

ZAEBUC leads other edit tagging techniques but trails behind GPT-4o.

For our ensemble models (3-Ensemble), we combine the outputs of the top three

non-LLM models per dataset. For QALB-2014, QALB-2015, and ZAEBUC, the en-

semble includes the best Seq2Seq model incorporating morphological preprocessing

and GED predictions, SWEET2, and the cascaded setup SWEET2
NoPnx + SWEETPnx. For

MADAR CODA, we combine AraT5+City, SWEET, and the second-best SWEET model

using CAMeLBERT-MSA (see Table D.2 in Appendix D.1). For APGC v2.0, the ensem-

ble includes the Multi-Step model, SWEET, and the second-best SWEET variant using

AraBERTv02 with word-level edits and no pruning (Table D.1, Appendix D.1).

The 3-Ensembles outperform single models, achieving SOTA results across all

datasets except QALB-2015, primarily by improving precision at the cost of recall.

Adding GPT-4o to the ensemble (3-Ensemble+GPT-4o) further boosts performance,

reaching F0.5 scores of 81.8 on QALB-2014, 86.9 on ZAEBUC, 88.6 on MADAR CODA,

and 90.9 on APGC v2.0. Notably, incorporating GPT-4o outputs generated using control

prompting, such as GPT-4o+GED for GEC, GPT-4o+DAP for CODAfication, or GPT-

4o+GID for gender rewriting, offers no gains over the standard 3-Ensemble+GPT-4o.

Test Results: Table 7.5 presents test results for GEC, while Table 7.6 reports corre-

sponding results for CODAfication and gender rewriting, using the best setups identified

on the Dev sets. For GEC, the cascaded setup SWEET2
NoPnx + SWEETPnx sets a new SOTA

on QALB-2014 with 80.5 F0.5, outperforming all Seq2Seq models introduced in Chapter 5.
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QALB-2014 QALB-2015-L1 QALB-2015-L2 ZAEBUC
P R F0.5 P R F0.5 P R F0.5 P R F0.5

AraBART 84.0 64.7 79.3 82.0 71.7 79.7 69.6 43.5 62.1 86.0 71.6 82.7
AraBART+GED43 84.2 65.4 79.6 81.2 72.4 79.3 69.0 45.4 62.5 85.4 72.6 82.5
AraBART+Morph+GED43 83.9 65.7 79.5 82.6 72.1 80.3 67.6 45.2 61.5 85.4 73.7 82.7
AraBART+GED13 84.1 65.0 79.4 81.5 72.7 79.5 69.3 44.9 62.5 85.9 73.4 83.1
GPT-4o+GED 82.9 62.0 77.7 82.8 71.1 80.2 75.2 42.5 65.1 89.0 73.2 85.3
SWEET2 82.6 69.5 79.6 80.0 74.3 78.8 66.1 42.5 59.5 85.5 74.4 83.0
SWEET2

NoPnx + SWEETPnx 84.5 67.7 80.5 82.2 73.6 80.3 70.0 37.3 59.6 85.7 74.1 83.1
3-Ensemble 85.7 67.4 81.3 83.7 73.3 81.3 73.3 39.2 62.4 89.7 73.7 85.9

+ GPT-4o+GED 89.9 59.7 81.6 88.5 66.2 82.9 81.5 31.9 62.2 93.5 69.5 87.5

Table 7.5: MSA GEC results on the Test sets of QALB-2014, QALB-2015 (L1), QALB-
2015 (L2), and ZAEBUC. Best non-ensemble results are underlined. The best overall
results are in bold.

This improvement is statistically significant at p < 0.05, based on a two-sided approxi-

mate randomization test, compared to the best Seq2Seq baseline (AraBART+GED43). On

QALB-2015-L1, the same setup matches the performance of AraBART+Morph+GED43

with an F0.5 of 80.3, and on ZAEBUC, it achieves 83.1, on par with AraBART+GED13.

However, on QALB-2015, it underperforms relative to all Seq2Seq baselines.

For CODAfication and gender rewriting, SWEET achieves SOTA performance, reaching

86.5 F0.5 on MADAR CODA and 89.8 on APGC v2.0. Both results are statistically

significant improvements over the strongest previously introduced systems: AraT5+DA

Phrase for CODAfication and the Multi-Step model for gender rewriting.

Our ensemble models further enhance performance across all datasets, achieving F0.5

scores of 81.6 on QALB-2014, 82.9 on QALB-2015-L1, 87.5 on ZAEBUC, 88.9 on

MADAR CODA, and 91.3 on APGC v2.0. Notably, we incorporate outputs from the

best performing GPT-4o control prompting setups: GPT-4o with GED for GEC, GPT-4o

with DAP for CODAfication, and GPT-4o with GID for gender rewriting. This addition

improves performance across all GEC datasets except QALB-2015-L2 but yields no

further gains for CODAfication.
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MADAR CODA APGC v2.0
P R F0.5 P R F0.5

AraT5 87.3 78.0 85.2 - - -
AraT5+DA Phrase 88.4 79.0 86.3 - - -
Joint - - - 79.3 80.4 79.5
Multi-Step - - - 88.9 86.7 88.4
GPT-4o+DAP 59.3 55.1 58.4 - - -
GPT-4o+GID - - - 76.4 76.5 76.4
SWEET 89.4 76.6 86.5 90.3 87.6 89.8
3-Ensemble 92.2 77.7 88.9 91.4 89.1 90.9

+ GPT-4o+DAP 94.0 73.1 88.9 - - -
+ GPT-4o+GID - - - 92.9 85.2 91.3

Table 7.6: CODAfication and gender rewriting results on MADAR CODA and APGC
v2.0 Test sets. Best non-ensemble results are underlined, best overall results are in bold.

7.4.4 Runtime Performance

Table 7.7 compares our text editing models to the Seq2Seq models from Chapter 5

in terms of model size, initialization time, and inference runtime. Initialization and

inference times were averaged over 10 runs on the QALB-2014 Dev set using a single

A100 GPU with a batch size of 32. The reported values for AraT5+Morph+GED43 reflect

the combined size, initialization, and inference times of all its components. Our SWEET

model is 4x smaller than AraT5+Morph+GED43 , while the cascaded system SWEET2
NoPnx

+ SWEETPnx is about half the AraT5+Morph+GED43 model size. In terms of speed,

SWEET initializes 19x faster than AraT5+Morph+GED43, while the cascaded system

achieves a 9x initialization speedup. For inference, SWEET is also 19x faster, SWEET2 is

9x faster, and the cascaded setup is 6x faster. Compared to the vanilla AraBART model,

SWEET runs 6x faster, SWEET2 is 3x faster, and the cascaded system is twice as fast.

Although the 3-Ensemble setup achieves the best performance, it is the largest in model

size and the slowest overall.
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Params Time
Init. Run

AraBART 139M 1.7 70.7
AraT5+Morph+GED43 502M 24.7 218.5
SWEET 135M 1.3 11.6
SWEET2 135M 1.3 23.2
SWEET2

NoPnx + SWEETPnx 270M 2.7 34.8
3-Ensemble 908M 28.7 276.4

Table 7.7: Number of parameters (Params.), initialization time (Init.), and runtime for
different models on the Dev set of QALB-2014. Init. and runtime are in seconds and
averaged over 10 runs on a single A100 GPU using a batch size of 32.

7.4.5 Error Analysis

GEC: Table 7.8 presents specific error type performance of the best Seq2Seq model

(AraBART+Morph+GED13), our best SWEET system (SWEET2
NoPnx + SWEETPnx), and the

best ensemble (3-Ensemble+GPT-4o). SWEET outperforms the Seq2Seq baseline on most

error types in QALB-2014 and ZAEBUC, achieving macro-average improvements of 3.6

and 4.5 F0.5, respectively. However, the Seq2Seq baseline remains the best-performing

model on QALB-2015, both on macro-average F0.5 and most error types. Notably, on

ZAEBUC, although SWEET improves error-type performance over the baseline, it does

not surpass it in overall GEC performance (Table 7.3). This is primarily due to the

skewed error distribution in ZAEBUC, where O/C/Merge-related errors dominate, and

both models perform comparably on these types. The error types where SWEET excels are

relatively infrequent (Table 5.2). The ensemble model yields modest gains over SWEET

on QALB-2014 and QALB-2015, but not on ZAEBUC.

CODAfication: In Table 7.9, we revisit the 100 erroneous cases sampled in Chapter 6

(§6.4.4). We replicate our manual error analysis over the outputs of our best SWEET model

and the best ensemble system (3-Ensemble+GPT-4o), comparing them to the baseline
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QALB-2014 QALB-2015 ZAEBUC

Seq2Seq SWEET Ensemble Seq2Seq SWEET Ensemble Seq2Seq SWEET Ensemble
Delete 40.8 44.3 45.2 45.3 48.6 64.6 51.9 63.6 62.5
Merge-B 93.0 93.7 93.8 86.6 87.1 90.4 96.7 96.9 96.6
Merge-I 93.0 93.5 93.6 86.4 87.0 90.5 96.7 96.9 96.6
M 27.6 33.6 28.6 40.8 18.8 21.6 48.6 50.0 41.7
M+O 37.7 61.0 60.6 15.2 0.0 0.0 55.6 100.0 0.0
O 94.3 94.5 94.4 80.2 72.5 76.5 94.4 94.4 94.1
O+X 73.9 81.5 83.3 0.0 33.3 0.0 0.0 0.0 0.0
P 77.4 75.6 76.8 63.7 65.0 64.8 62.8 71.9 70.4
S 44.5 57.1 57.4 34.1 27.3 26.4 40.4 47.6 46.9
X 61.1 61.4 62.4 63.9 60.2 65.0 72.9 74.1 74.1
Split 87.1 83.8 87.6 78.9 70.7 76.7 88.2 90.0 95.2
UNK 57.2 55.0 56.0 35.2 29.6 29.6 63.1 44.6 47.6
C 96.8 96.4 94.7 91.4 88.4 87.1 96.1 96.0 93.9
Macro Avg 68.0 71.6 71.9 55.5 53.0 53.3 66.7 71.2 63.1

Table 7.8: Error type performance (F0.5) on the Dev sets of QALB-2014, QALB-2015,
and ZAEBUC for the best baseline Seq2Seq model, our best SWEET system, and the best
ensemble. Best non-ensemble scores are underlined, best overall scores are in bold.

Seq2Seq model (AraT5+City). Errors are categorized using the taxonomy introduced in

§6.4.4. These 100 cases represent 21% of the 471 total erroneous predictions made by the

Seq2Seq model. SWEET reduces the number of errors by 27%, correctly rewriting 27 out

of the 100 cases, whereas the ensemble reduces the number of errors by 16%. Both models

show reductions across all error categories when compared to the Seq2Seq baseline, with

notable improvements in non-coda and hallucination errors. These gains underscore the

enhanced controllability offered by the text editing approach over traditional Seq2Seq

models.

Gender Rewriting: Table 7.10 presents the distribution of erroneous sentences in the

outputs of the best Multi-Step model, the best SWEET model, and the best ensemble

(3-Ensemble+GPT-4o). The SWEET model reduces the proportion of erroneous sentences

across all four target corpora, except for 1F/2M, with the largest reduction observed

for 1F/2F (0.4%). The ensemble model further lowers the error rates across all target
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Error Type Seq2Seq SWEET Ensemble

Non-Coda 46% 42% (-33%) 46% (-15%)
Hallucination 19% 22% (-16%) 20% (-11%)
Valid 13% 16% (-8%) 14% (-8%)
Deletion 9% 11% (-11%) 10% (-11%)
Related Hallucination 9% 7% (-44%) 10% (-11%)
Punctuation 4% 1% (-75%) 0% (-100%)
Correct 0 37% 20%

Table 7.9: Distribution of errors over a sample of 100 cases from the MADAR CODA
Dev set for the best Seq2Seq model, the best SWEET model, and the best ensemble.
Percentages in parentheses indicate the reduction in errors relative to the Seq2Seq model.

Target Multi-Step SWEET Ensemble SWEET Ensemble
Fixed Shared Error Fixed Shared Error

1M/2M 3.8% 3.7% 3.3% 1.4% 2.4% 1.3% 1.1% 2.7% 0.6%
1F/2M 4.0% 4.1% 4.4% 1.4% 2.5% 1.6% 0.7% 3.2% 1.2%
1M/2F 7.1% 7.0% 7.0% 2.2% 4.8% 2.1% 1.4% 5.6% 1.4%
1F/2F 6.6% 6.2% 5.7% 2.1% 4.5% 1.7% 1.7% 4.9% 0.8%

Table 7.10: Distribution of erroneous sentences from the APGC v2.0 Dev set across
the four target corpora for the Multi-Step model, the best SWEET model, and the top
ensemble. The second half of the table reports the distribution of Fixed, Shared, and
newly introduced Errors by the SWEET and ensemble models.

corpora except 1F/2M, where it increases the error rate by 0.4%. The most substantial

improvement is again seen in the 1F/2F setting, with a 0.9% reduction compared to

the Multi-Step model. Table 7.10 also reports the distribution of fixed, shared, and

newly introduced errors by the SWEET and ensemble models relative to the Multi-Step

baseline. Across all four target corpora, both models achieve notable gains by correcting

a substantial portion of the baseline’s errors. While SWEET fixes more errors than the

ensemble, it also introduces more new errors. In contrast, the ensemble introduces fewer

errors and retains a higher proportion of shared errors with the baseline, suggesting a

more balanced trade-off that improves over the baseline with fewer regressions.
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Multi-Step SWEET Ensemble

Error Type 1M/2M 1F/2M 1M/2F 1F/2F 1M/2M 1F/2M 1M/2F 1F/2F 1M/2M 1F/2M 1M/2F 1F/2F

No Change 25% 32% 52% 37% 17% 20% 37% 26% 18% 25% 44% 30%
Rewrite 43% 47% 35% 40% 16% 31% 22% 14% 18% 36% 23% 16%
Gold 32% 21% 13% 23% 26% 17% 13% 21% 27% 19% 13% 21%
Correct 0 0 0 0 41% 32% 28% 39% 37% 20% 20% 33%

Table 7.11: Error type distribution for a sample of 100 Dev sentences from APGC
v2.0, comparing the Multi-Step model, the best-performing SWEET model, and the top
ensemble system.

Table 7.11 presents a manual error analysis of 100 erroneous Dev sentences from APGC

v2.0 for each of the four target corpora across the three systems. We categorized errors

into: (1) No Change errors, where the system failed to make a necessary change (false

negatives), (2) Rewrite errors, where incorrect changes were made (false positives), and

(3) Gold errors, where the output was correct but did not match the reference due to

annotation inconsistencies. We began our analysis with the errors made by the Multi-Step

model and then examined how the SWEET and ensemble systems performed on the

same set.

The Multi-Step model’s errors are dominated by Rewrite errors across all contexts,

indicating a tendency to over-correct. The SWEET model reduces errors across all target

corpora, with the most substantial improvement in the 1M/2M setting, cutting errors by

41% through reductions in both No Change and Rewrite categories. The ensemble model

also improves over the Multi-Step baseline but underperforms compared to SWEET.
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7.5 Summary

In this chapter, we introduced a text editing framework that reframes gender rewriting,

GEC, and CODAfication as sequence tagging tasks. Unlike traditional Seq2Seq models,

our approach assigns edit operations directly to input tokens, effectively combining

identification and generation in a single step. These edit tags are automatically derived

from data, removing the need for hand-crafted or language-specific operations and

enabling adaptability to morphologically rich languages like Arabic. We demonstrated

that our models achieve SOTA or highly competitive results across all tasks while being

substantially more efficient, over six times faster than previously introduced approaches.

Additionally, we showed that ensembling diverse models further boosts performance.
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Chapter 8

Summary and Conclusions

In this dissertation, we explored three NLG tasks for Arabic: gender rewriting, grammati-

cal error correction, and dialectal text normalization. For each task, For each task, we

introduced controllable modeling approaches that incorporate linguistic traits to enhance

the controllability of NLG systems. Our models achieve state-of-the-art results across

all tasks. In this final chapter, we highlight the main findings and contributions of the

dissertation and discuss promising directions for future research.

8.1 Arabic Gender Rewriting

We first presented the task of Arabic gender rewriting as generating alternatives of a given

Arabic sentence to match different target user gender contexts: a male speaker with a

male listener, a female speaker with a male listener, a male speaker with a female listener,

and a female speaker with a female listener. This requires changing the grammatical

gender (masculine or feminine) of certain words referring to the users (speaker/first

person and listener/second person. Formally, given an input X that combines both the

input Arabic sentence and the target gender preferences, and a sequence of word-level
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gender labels G corresponding to the input Arabic sentence, the goal is to generate a

rewritten version Y that matches the user specified gender preferences:

P (Y |X,G) =
nY

t=1

P (yt|y1, ..., yt�1, X,G)

To facilitate this task, we introduced the Arabic Parallel Gender Corpus v2.0, a new

dataset designed for gender identification and rewriting. We also developed and bench-

marked various gender rewriting systems and LLMs on this corpus and demonstrated

their effectiveness.

The Arabic Parallel Gender Corpus We presented the Arabic Parallel Gender Corpus

v2.0 (APGC v2.0), which extends APGC v1.0 by adding second person targets as well

as increasing the total number of sentences over 6.5 times, reaching over 590K words.

The new corpus consists of multiple parallel components: four combinations of first- and

second-person grammatical gender (masculine and feminine), English source sentences,

and English-to-Arabic machine translation outputs. We selected English-Arabic sentence

pairs from the OpenSubtitles 2018 dataset for manual annotation. The annotation process

involved gender identification followed by rewriting to generate all parallel gender

alternatives corresponding to the target user gender contexts studied. In total, the corpus

includes 80,326 parallel sentences (596,799 words), with gender annotations provided at

both the sentence and word levels.

Gender Rewriting Approaches We introduced two gender rewriting approaches: joint

Seq2Seq models, which perform sentence-level rewriting in a single pass without an

explicit identification step, and multi-step word-level models, which decompose the task

into separate identification and rewriting stages for finer control. We also evaluated
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four LLMs: two commercial (OpenAI’s GPT-3.5-turbo and GPT-4o) and two open-

source, Arabic-centric models (Jais-30B-Chat and the recently introduced Fanar LLM).

Our results showed that the multi-step approach outperforms joint models due to its

controllability. Furthermore, we demonstrated that incorporating word-level gender

identification when prompting LLMs improves their performance on gender rewriting.

We further demonstrated how gender rewriting can be used to personalize the output

of user-unaware machine translation systems through post-editing. To facilitate real-world

use, we introduced the User-Aware Arabic Gender Rewriter, a web-based application

that integrates our best-performing model, enabling seamless user interaction.

Lastly, we summarized our findings from the Shared Task on Arabic Gender Rewrit-

ing, which we organized as part of the Seventh Arabic NLP Workshop.

8.2 Arabic Grammatical Error Detection and Correction

We presented a comprehensive study on grammatical error correction (GEC) for Modern

Standard Arabic (MSA) and formalized the task of Arabic grammatical error detection

(GED). We demonstrated that conditioning models on GED predictions enhances GEC

performance. Formally, given an erroneous Arabic sentence X and its corresponding

sequence of error types E, the goal is to generate a corrected sentence Y :

P (Y |X,E) =
nY

t=1

P (yt|y1, ..., yt�1, X,E)

Additionally, we explored the impact of contextual morphological preprocessing on

model performance. Our systems achieved state-of-the-art results on two MSA GEC

datasets (L1 and L2) and established a strong benchmark on a newly introduced L1

dataset.



123
Arabic Grammatical Error Detection (GED) GED has received little attention in

Arabic NLP due to the absence of manually annotated corpora and standardized error

type framworks. To address this, we proposed an automatic method that extracts edits

from parallel GEC corpora and assigns error types using an Arabic error type annotation

tool. We framed GED as a multi-class sequence labeling task and evaluated models under

three levels of granularity: 43-Class, 13-Class, and 2-Class (binary).

Arabic Grammatical Error Correction (GEC) We were the first to benchmark pre-

trained Seq2Seq models on Arabic GEC, experimenting with AraBART and AraT5. We

also benchmarked both open-source Arabic-centric and commercial LLMs including.

We investigated whether conditioning these models on GED predictions could improve

correction performance and whether contextual morphological preprocessing offers addi-

tional benefits. Our findings show that GED predictions consistently enhance Seq2Seq

model performance, and morphological preprocessing further improves results in some

cases. Moreover, we found that commercial LLMs like GPT-4o perform remarkably well

on certain GEC datasets. However, we emphasized that these results should be inter-

preted with caution due to the models’ closed-source nature and the lack of transparency

regarding their training data, raising concerns about reproducibility and potential data

contamination.

8.3 Dialectal Text Normalization

We presented the task of dialectal text normalization, known as CODAfication, which

involves converting Dialectal Arabic (DA) into the Conventional Orthography for Di-

alectal Arabic (CODA). DA represents the non-standard variety of Arabic and comprises

multiple regional dialects, such as Egyptian, North African, Levantine, and Gulf Arabic,
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that differ significantly from both MSA and from one another in terms of phonology,

morphology, and lexicon. While DA is primarily spoken, it is increasingly used in written

form on social media. However, the lack of standardized spelling leads to noisy, highly

variable text, creating challenges for NLP systems due to increased data sparsity. To

address this issue, CODA was proposed as a unified spelling convention. Nevertheless,

CODA has largely been treated as a secondary task, supporting applications like morpho-

logical disambiguation, diacritization, and lemmatization, rather than being studied as a

primary NLG task.

In this dissertation, we framed CODAfication as a standalone generation task. We

worked with the MADAR CODA Corpus, a unique parallel dataset covering five major

dialects spoken in Beirut, Cairo, Doha, Rabat, and Tunis. We benchmarked pretrained

Seq2Seq models and LLMs on the task, and showed that conditioning these models on

dialect identification predictions leads to improved normalization performance. Formally,

given a dialectal Arabic sentence X and its corresponding dialect D, the task is to

generate the CODAfied version Y according to:

P (Y |X,D) =
nY

t=1

P (yt|y1, ..., yt�1, X,D)

This work provided the first comprehensive evaluation of modern generation models on

CODAfication.

8.4 Text Editing

All the introduced controlled NLG approaches for the tasks we explored in this desser-

tation have relied on an explicit identification step to extract linguistic traits, such as

gender, error types, or dialect, which are then used to condition Seq2Seq models. A key
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observation across the three NLG tasks we explored is that the input and output sequences

often share substantial overlap. As a result, full-sequence autoregressive models can be

inefficient, since most tokens are simply copied from the input to the output.

To address this, we introduced a novel, text editing framework that reframes all

three tasks as sequence tagging problems. Instead of generating text autoregressively,

our approach assigns edit tags to input tokens; applying these tags transforms the input

into the desired output, effectively combining both identification and generation into a

single step. Formally, given an input sequence x = x1, x2, ..., xn, the goal is to assign a

sequence of edit operations e = e1, e2, ..., en where ei 2 E, and E is the edit vocabulary,

such that applying each ei to xi produces the output sequence y = y1, y2, ..., ym. These

edit tags are derived automatically from data, removing the need for hand-crafted or

language-specific edits.

We demonstrated that this text editing approach achieves state-of-the-art or highly

competitive performance across all three tasks, surpassing prior models on most bench-

marks. In addition to strong performance, they are over six times faster than previously

introduced models, making them more practical for real-world use. Lastly, we showed

that ensemble strategies further improve performance by leveraging complementary

strengths across different models.

8.5 Future Work

Building on the findings and contributions of this dissertation, several promising direc-

tions emerge for future research in Arabic NLG. In this section, we outline three major

avenues: extending controlled NLG to additional Arabic tasks, building personalized

writing assistants, and developing human-centered evaluation frameworks.
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Expanding Controlled NLG to Additional Arabic Tasks This dissertation laid the

foundation for controlled Arabic NLG by introducing linguistically grounded approaches

for gender rewriting, grammatical error correction (GEC), and dialectal text normalization

(CODAfication). These contributions open the door to adapting our frameworks to other

Arabic NLG tasks where linguistic traits matter. One promising direction is Arabic

text simplification, a significantly underexplored task. In fact, our recent work on the

SAMER corpus (Alhafni et al., 2024b), the first publicly available Arabic simplification

dataset annotated with readability levels for school-aged learners, provides a concrete

starting point for building controllable simplification systems that adapt to users’ reading

proficiency. Similarly, tasks such as code-switching or style transfer across Arabic

dialects could benefit from trait-conditioned generation models.

Personalized Arabic Writing Assistants The NLG tasks explored in this dissertation

serve as key building blocks for designing user-tailored writing assistants for Arabic. A

typical Arabic user may benefit from personalized outputs across multiple dimensions:

receiving grammatically correct text tailored to their dialect, reading content rendered in

their gender form, or being offered corrections that adapt to their specific error patterns.

In Chapter 4, we demonstrated a proof of concept with the User-Aware Arabic Gender

Rewriter, which aligns system outputs with user-specified gender preferences. This lays

the groundwork for personalized assistants that can evolve with users, potentially through

adaptive learning. Moreover, these systems could be used as data collection interfaces in

an active learning setup, where user interactions trigger targeted annotation campaigns.

Such strategies can help mitigate the scarcity of annotated Arabic NLG data and close

the loop between model deployment and dataset expansion.
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Human-Centered Evaluation Human-Centered Evaluation. Traditional automatic

metrics in NLG, such as the M2 scorer or BLEU, fall short in assessing how well a model’s

outputs align with users’ specific needs or preferences. This is especially important when

building systems that condition generation on user-specific linguistic traits. For example,

in our gender rewriting experiments, we used BLEU to demonstrate reduced gender bias

in machine translation outputs; however, a thorough human evaluation is still needed

to verify that the rewritten outputs meet users’ expectations. The same applies to our

GEC and CODAfication systems, where user-centered evaluation could provide more

meaningful insights into system effectiveness and usability. Future work should prioritize

incorporating human feedback, user studies, and task-specific satisfaction metrics to

assess NLG systems beyond traditional reference-based scores.

Beyond Arabic Although this dissertation has focused on Arabic, many of its insights

and the challenges it addresses are broadly applicable to other languages, particularly

those that are morphologically rich.

For instance, the gender rewriting task, motivated by gender bias in machine translation,

is directly relevant to other gender-marking languages such as Spanish, Italian, and

French. One promising direction for future work is to extend the Arabic Parallel Gender

Corpus (APGC) to other languages by leveraging multilingual parallel corpora such as

OpenSubtitles, from which APGC was originally drawn.

In the context of GEC, we showed that conditioning models on error types can sig-

nificantly improve performance, a finding that aligns with previous results in English

(Yuan et al., 2021). Crucially, we were only able to enable this line of work through

the availability of ARETA, an automatic error typing tool for Arabic. This highlights

a broader need: for other languages, developing similar tools and annotation schemes
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is essential not only to advance GEC but also facilitate related tasks such as GED and

error-aware feedback generation.

In the case of dialectal text normalization, our work demonstrates that conditioning

Seq2Seq models on dialect labels can significantly improve performance. While efforts

in multilingual dialect normalization exist (Kuparinen et al., 2023), they typically treat

dialect as an implicit factor rather than an explicit modeling signal. Our approach

differs in that it leverages dialect identification as an attribute to guide normalization.

This technique is easily transferable to other languages with dialectal variation: given

a parallel normalization corpus and a dialect classifier, one could replicate our setup

to build dialect-aware normalization systems that are more accurate, controllable, and

linguistically informed.

Finally, our text editing framework offers a promising direction for language-agnostic

applications. By deriving edit tags directly from data, it eliminates the need for language-

specific resources. Its underlying edit extraction algorithm is language-agnostic and

requires only monolingual parallel corpora, making it well-suited for a wide range of

languages. Future work could explore applying this framework to other languages with

NLG tasks that exhibit high input-output overlap.
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Chapter 4 Appendix

A.1 LLMs Prompts

Prompt Lang Prompt

EN

You are an Arabic text rewriting tool that can rewrite gender-marking words
based on the user needs. Please rewrite the following sentence marked with
the tag <input> SRC </input> such that the speaker is {speaker-gender} and
the listener is {listener-gender}. Only change the gender marking words. Do
not rephrase any parts of the sentence. If the sentence does not have any
gender marking words, do not rewrite it. Once you are done, output the
revised sentence directly without providing any explanations. Remember to
format the rewritten output with the tag <output> Your Rewritten Version
</output>. Please start: <input> Input Sentence </input>

AR

input
speaker-gender input

listener-gender

input output output
input

  أنت أداة لإعادة صياغة النصوص العربية حيث يمكنك إعادة كتابة الكلمات التي تحمل علامات
  تمييز  الجنس  بناء  على  احتياجات  المستخدم.  يرجى  إعادة  كتابة  الجملة  التالية  المحددة  بالوسم

  النص  المدخل  بحيث  يكون  المتكلم  والمخاطب
  يجب  فقط  تغيير  الكلمات  التي  تحمل  علامات  تمييز  الجنس.  لا  تعيد  صياغة
  أي أجزاء أخرى من الجملة. إذا لم تحتوي الجملة على أي كلمات تحمل علامات تمييز الجنس، فلا
  تقم بإعادة كتابتها. قم بإخراج الجملة المعدلة مباشرة دون تقديم أي تفسيرات. تذكر تنسيق النص
  المعدل  باستخدام  الوسم  النص  المعدل  الرجاء  البدء:  النص

  المدخل

<  >  
{  }  <  />  

{  }  

<  >  <  />  <  >  
<  />  

.  

Table A.1: 0-shot prompts used to evaluate LLMs performance on gender rewriting.
Prompt Lang is the prompt language either in English (EN) or Arabic (AR).
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Prompt Lang Prompt

EN

You are an Arabic text rewriting tool that can rewrite gender-marking words
based on the user needs. We will provide you with example sentences
marked with the tag <input> SRC </input>. These sentences are followed by
their rewritten versions, marked with <output> TGT </output>, as reviewed
and rewritten by human experts.Please rewrite the following sentence marked
with the tag <input> SRC </input> such that the speaker is {speaker-gender}
and the listener is {listener-gender}. Only change the gender marking words.
Do not rephrase any parts of the sentence. If the sentence does not have any
gender marking words, do not rewrite it. Once you are done, output the
revised sentence directly without providing any explanations. Here are some
in-context examples:
(1) <input> Input Sentence </input>: <output> Rewritten Sentence </output>
(2) <input> Input Sentence </input>: <output> Rewritten Sentence </output>
(3) <input> Input Sentence </input>: <output> Rewritten Sentence </output>
(4) <input> Input Sentence </input>: <output> Rewritten Sentence </output>
(5) <input> Input Sentence </input>: <output> Rewritten Sentence </output>
Please feel free to refer to these examples. Remember to format the rewritten
output with the tag <output> Your Rewritten Version </output>. Please start:
<input> Input Sentence </input>

AR

input
speaker-gender input

listener-gender

output output>: <input input
output output>: <input input
output output>: <input input
output output>: <input input
output output>: <input input

output
input input output

١
٢
٣
٤
٥

  أنت أداة لإعادة صياغة النصوص العربية حيث يمكنك إعادة كتابة الكلمات التي تحمل علامات
  تمييز  الجنس  بناء  على  احتياجات  المستخدم.  يرجى  إعادة  كتابة  الجملة  التالية  المحددة  بالوسم

  بحيث  يكون  المتكلم  والمخاطب
  .  يجب  فقط  تغيير  الكلمات  التي  تحمل  علامات  تمييز  الجنس.  لا  تعيد  صياغة
  أي أجزاء أخرى من الجملة. إذا لم تحتوي الجملة على أي كلمات تحمل علامات تمييز الجنس، فلا

  تقم بإعادة كتابتها. قم بإخراج الجملة المعدلة مباشرة دون تقديم أي تفسيرات. إليك بعض الأمثلة
  ضمن السياق:

  (  )  النص  المدخل  النص  المعدل
  (  )  النص  المدخل  النص  المعدل
  (  )  النص  المدخل  النص  المعدل
  (  )  النص  المدخل  النص  المعدل
  (  )  النص  المدخل  النص  المعدل

   ا  تتردد  في  الرجوع  إلى  هذه  الأمثلة.  تذكر  تنسيق  النص  المعدل  باستخدام  الوسم  النص
  المعدل  الرجاء  البدء:  النص  المدخل

<  >  
{  }  <  />  

{  }  

<  />  <  />  <  >  
<  />  <  />  <  >  
<  />  <  />  <  >  
<  />  <  />  <  >  
<  />  <  />  <  >  

<  >  
<  />  <  >  <  />  

  النص  المدخل

  ل  

Table A.2: 5-shot prompts used to evaluate LLMs performance on gender rewriting.
Prompt Lang is the prompt language either in English (EN) or Arabic (AR).
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Prompt Lang Prompt

EN

You are an Arabic text rewriting tool that can rewrite gender-marking words
based on the user needs. We will provide you with example sentences
marked with the tag <input> SRC </input>. These sentences are followed by
their rewritten versions, marked with <output> TGT </output>, as reviewed
and rewritten by human experts. The words that need to be changed are
marked with distinctive parentheses ((#word#)). Rewrite the sentence marked
with the tag <input> Input Text </input> such that the speaker is
{speaker-gender} and the listener is {listener-gender}. Change only the
marked words without rephrasing any other part of the sentence. If no
marked words are present, return the sentence as is without any modification.
Once you are done, output the revised sentence directly without providing
any explanations. Here are some in-context examples:
(1) <input> Input Sentence </input>: <output> Rewritten Sentence </output>
(2) <input> Input Sentence </input>: <output> Rewritten Sentence </output>
(3) <input> Input Sentence </input>: <output> Rewritten Sentence </output>
(4) <input> Input Sentence </input>: <output> Rewritten Sentence </output>
(5) <input> Input Sentence </input>: <output> Rewritten Sentence </output>
Please feel free to refer to these examples. Remember to format the rewritten
output with the tag <output> Your Rewritten Version </output>. Please start:
<input> Input Sentence </input>

AR

input input
output output

input input
listener-gender speaker-gender

input output output
input

output output>: <input input
output output>: <input input
output output>: <input input
output output>: <input input
output output>: <input input

output
input input output

١
٢
٣
٤
٥

  أنت أداة لإعادة صياغة النصوص العربية بحيث تعيد كتابة الكلمات التي تحمل علامات تمييز الجنس
  بناء  على  احتياجات  المستخدم.  سنزودك  بجمل  محددة  بالوسم  النص  المدخل

  تلي  هذه  الجمل  نسخ  معاد  كتابتها،  محددة  بالوسم  النص  المعدل  ،  والتي  تمت
يين. الكلمات التي يجب تغييرها تكون محددة بين الأقواس   مراجعتها وتحريرها من قبل خبراء لغو
  المميزة  الكلمة  .  أعد  كتابة  الجملة  المحددة  بالوسم  النص  المدخل  بحيث
  يكون  المتكلم  والمخاطب  .  غير  فقط  الكلمات  المحددة

  دون إعادة صياغة أي جزء آخر من الجملة. إذا لم توجد كلمات محددة، أعد الجملة كما هي بدون أي
  تعديل. عند الانتهاء، اخرج الجملة المعدلة مباشرة دون تقديم أي تفسيرات. تذكر استخدام الوسم
  النص  المعدل  لتنسيق  النص  المعدل.  ابدأ:  النص  المدخل

  إليك  بعض  الأمثلة  ضمن  السياق:
  النص  المدخل  النص  المعدل
  النص  المدخل  النص  المعدل

  النص  المدخل
  النص  المدخل  النص  المعدل
  النص  المدخل  النص  المعدل

  لا  تتردد  في  الرجوع  إلى  هذه  الأمثلة.  تذكر  تنسيق  النص  المعدل  باستخدام  الوسم  النص
  المعدل  الرجاء  البدء:  النص  المدخل

<  />  <  >  
<  />  <  >  

<  />  <  >  ((#  #))  
{  }  {  }  

<  >  <  />  <  >  
<  />  

<  />  <  />  <  >  
<  />  <  />  <  >  
  <  >  </  >  النص  المعدل  </  >
<  />  <  />  <  >  
<  />  <  />  <  >  

<  >  
<  />  <  >  <  />  

(  )  
(  )  
(  )  
(  )  
(  )  

Table A.3: 5-shot prompts with gender identification used to evaluate LLMs performance
on gender rewriting. Prompt Lang is the prompt language either in English (EN) or
Arabic (AR).
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A.2 LLMs Results

Model P-Lang Shots P R F0.5 BLEU
GPT-3.5-turbo EN 0 19.4 65.4 22.6 61.5
GPT-3.5-turbo EN 5 14.6 37.8 16.6 59.2
GPT-3.5-turbo AR 0 18.9 59.8 21.9 64.5
GPT-3.5-turbo AR 5 21.9 64.8 25.2 69.5
GPT-4o EN 0 38.1 73.2 42.1 84.4
GPT-4o EN 5 44.6 73.2 48.3 88.8
GPT-4o AR 0 38.8 75.8 43.0 84.4
GPT-4o AR 5 49.2 74.6 52.8 88.8
Fanar EN 0 9.1 31.8 10.6 42.3
Fanar EN 5 11.9 41.2 13.8 41.7
Fanar AR 0 9.9 36.0 11.5 40.6
Fanar AR 5 12.6 43.7 14.7 39.5
Jais-30B-Chat EN 0 8.2 33.4 13.1 24.5
Jais-30B-Chat EN 5 7.2 29.3 11.6 21.2
Jais-30B-Chat AR 0 7.8 32.2 12.5 18.2
Jais-30B-Chat AR 5 6.9 27.9 11.0 16.5

Table A.4: LLMs results on the Dev sets of APGCv2.0. P-Lang is the prompt language
either in English (EN) or Arabic (AR). Best F0.5 results for each LLM are underlined.
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Chapter 5 Appendix

B.1 LLMs Prompts

Prompt Lang Prompt

EN

You are an Arabic grammatical error correction tool that can identify and
correct grammatical and spelling errors in written text. Please identify and
correct any grammatical and spelling errors in the following sentence marked
with the tag <input> Input Sentence </input>. Make the minimal changes
necessary to correct the sentence. Do not rephrase any parts of the sentence
that are already grammatically correct, and avoid altering the meaning by
adding or removing information. After making the corrections, output the
revised sentence directly without providing  any explanations. Remember to
format the corrected output with the tag <output> Your Corrected Version
</output>. Please start: <input> Input Sentence </input>

AR
input input

output
input input output

ية والإملائية في اللغة العربية، حيث يمكنك تحديد وتصحيح   أنت أداة لتصحيح الأخطاء النحو
ية أو ية والإملائية في النصوص المكتوبة. يرجى تحديد وتصحيح أي أخطاء نحو   الأخطاء النحو

  إملائية  في  الجملة  التالية،  المحددة  بالوسم  النص  المدخل  .  قم  بإجراء  الحد
يا، وتجنب تغيير   الأدنى من التعديلات اللازمة لتصحيح الجملة. لا تعد صياغة أي أجزاء صحيحة نحو

  المعنى من خلال إضافة أو حذف أي معلومات. بعد إجراء التصحيحات، قم بإخراج الجملة
  المصححة  مباشرة  دون  أي  تفسيرات.  تذكر  تنسيق  النص  المصحح  باستخدام  الوسم

  النص  المصحح  الرجاء  البدء:  النص  المدخل

<  />  <  >  

<  >  
<  />  <  >  <  />  

Table B.1: 0-shot prompts used to evaluate LLMs performance on GEC. Prompt Lang is
the prompt language either in English (EN) or Arabic (AR).
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Prompt Lang Prompt

EN

You are an Arabic grammatical error correction tool that can identify and
correct grammatical and spelling errors in written text. We will provide you
with example sentences marked with the tag <input> SRC </input>, which
contain grammatical and spelling errors. These sentences are followed by the
corrected versions, marked with <output> TGT </output>, as reviewed and
edited by human experts. Please identify and correct any grammatical and
spelling errors in the following sentence marked with the tag <input> SRC
</input>. Make the minimal changes necessary to correct the sentence. Do
not rephrase any parts of the sentence that are already grammatically correct,
and avoid altering the meaning by adding or removing information. After
making the corrections, output the revised sentence directly without
providing any explanations.  Here are some in-context examples:
(1) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(2) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(3) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(4) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(5) <input> Input Sentence </input>: <output> Corrected Sentence </output>
Please feel free to refer to these examples.
Remember to format the corrected output with the tag <output> Your
Corrected Version </output>. Please start: <input> Input Sentence </input>

AR

input input
output output

input input

output output>: <input input
output output>: <input input
output output>: <input input
output output>: <input input
output output>: <input input

output output
input input

١
٢
٣
٤
٥

ية والإملائية في اللغة العربية، حيث يمكنك تحديد وتصحيح   أنت أداة لتصحيح الأخطاء النحو
ية ية والإملائية في النصوص المكتوبة .سنزودك بجمل تحتوي على أخطاء نحو   الأخطاء النحو

  وإملائية،  محددة  بالوسم  النص  المدخل  .  تلي  هذه  الجمل  النسخ  المصححة،
  المحددة  بالوسم  النص  المصحح  ،  والتي  تمت  مراجعتها  وتحريرها  من  قبل
ية أو إملائية في الجملة التالية، المحددة بالوسم يين. يرجى تحديد وتصحيح أي أخطاء نحو   خبراء لغو
  النص  المدخل  .  قم  بإجراء  الحد  الأدنى  من  التعديلات  اللازمة  لتصحيح

يا، وتجنب تغيير المعنى من خلال إضافة أو حذف أي   الجملة. لا تعد صياغة أي أجزاء صحيحة نحو
  معلومات. بعد إجراء التصحيحات، قم بإخراج الجملة المصححة مباشرة دون أي تفسيرات. إليك

  بعض الأمثلة ضمن السياق:
  (  )  النص  المدخل  النص  المصحح
  (  )  النص  المدخل  النص  المصحح
  (  )  النص  المدخل  النص  المصحح
  (  )  النص  المدخل  النص  المصحح
  (  )  النص  المدخل  النص  المصحح

  لا تتردد في الرجوع إلى هذه الأمثلة.
  تذكر  تنسيق  النص  المصحح  باستخدام  الوسم  النص  المصحح  الرجاء  البدء:

  النص  المدخل

<  />  <  >  
<  />  <  >  

<  />  <  >  

<  />  <  />  <  >  
<  />  <  />  <  >  
<  />  <  />  <  >  
<  />  <  />  <  >  
<  />  <  />  <  >  

<  />  <  >  
<  />  <  >  

Table B.2: 5-shot prompts used to evaluate LLMs performance on GEC. Prompt Lang is
the prompt language either in English (EN) or Arabic (AR).
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Prompt Lang Prompt

EN

You are an Arabic grammatical error correction tool that can identify and
correct grammatical and spelling errors in written text. We will provide you
with example sentences marked with the tag <input> SRC </input>, which
contain grammatical and spelling errors. These sentences are followed by the
corrected versions, marked with <output> TGT </output>, as reviewed and
edited by human experts. The words that need to be corrected are explicitly
marked with double parentheses and hash symbols ((#word#)). Please correct
only the marked words while keeping the rest of the sentence unchanged.
Make the minimal changes necessary to correct the marked words. Do not
rephrase any parts of the sentence that are already grammatically correct, and
avoid altering the meaning by adding or removing information. If there are
no errors, output the sentence as-is. After making the corrections, output the
revised sentence directly without providing any explanations.  Here are some
in-context examples:
(1) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(2) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(3) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(4) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(5) <input> Input Sentence </input>: <output> Corrected Sentence </output>
Please feel free to refer to these examples.
Remember to format the corrected output with the tag <output> Your
Corrected Version </output>. Please start: <input> Input Sentence </input>

AR

input input
output output

output output>: <input input
output output>: <input input
output output>: <input input
output output>: <input input
output output>: <input input

output output
input input

١
٢
٣
٤
٥

ية والإملائية في اللغة العربية، حيث يمكنك تحديد وتصحيح   أنت أداة لتصحيح الأخطاء النحو
ية ية والإملائية في النصوص المكتوبة .سنزودك بجمل تحتوي على أخطاء نحو   الأخطاء النحو

  وإملائية،  محددة  بالوسم  النص  المدخل  .  تلي  هذه  الجمل  النسخ  المصححة،
  المحددة  بالوسم  النص  المصحح  ،  والتي  تمت  مراجعتها  وتحريرها  من  قبل
يين. الكلمات التي تحتاج إلى تصحيح تكون محددة بين الأقواس المميزة  الكلمة  .   خبراء لغو

  يرجى تصحيح الكلمات المحددة فقط مع الحفاظ على باقي الجملة دون تغيير. قم بإجراء الحد الأدنى
يا، وتجنب   من التعديلات اللازمة لتصحيح الكلمات المحددة. لا تعد صياغة أي أجزاء صحيحة نحو
  تغيير المعنى من خلال إضافة أو حذف أي معلومات. بعد إجراء التصحيحات، قم بإخراج الجملة

  المصححة مباشرة دون أي تفسيرات. إليك بعض الأمثلة ضمن السياق:
  (  )  النص  المدخل  النص  المصحح
  (  )  النص  المدخل  النص  المصحح
  (  )  النص  المدخل  النص  المصحح
  (  )  النص  المدخل  النص  المصحح
  (  )  النص  المدخل  النص  المصحح

  لا تتردد في الرجوع إلى هذه الأمثلة.
  تذكر  تنسيق  النص  المصحح  باستخدام  الوسم  النص  المصحح  الرجاء  البدء:

  النص  المدخل

<  />  <  >  
<  />  <  >  

((#  #))  

<  />  <  />  <  >  
<  />  <  />  <  >  
<  />  <  />  <  >  
<  />  <  />  <  >  
<  />  <  />  <  >  

<  />  <  >  
<  />  <  >  

Table B.3: 5-shot prompts with binary GED used to evaluate LLMs performance on GEC.
Prompt Lang is the prompt language either in English (EN) or Arabic (AR).
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B.2 LLMs Results

QALB-2014 QALB-2015 ZAEBUC Avg.
Model P-Lang Shots P R F0.5 P R F0.5 P R F0.5 F0.5
GPT-3.5-turbo EN 0 70.6 54.8 66.7 59.6 39.6 54.1 70.8 70.3 70.7 63.9
GPT-3.5-turbo EN 5 68.6 58.6 66.3 57.2 39.5 52.5 71.0 63.5 69.4 62.7
GPT-3.5-turbo AR 0 70.0 58.5 67.3 58.2 39.2 53.1 68.3 71.3 68.9 63.1
GPT-3.5-turbo AR 5 68.1 58.0 65.8 56.9 39.4 52.2 71.4 63.7 69.7 62.6
GPT-4o EN 0 82.1 56.4 75.2 72.1 45.0 64.3 80.2 75.5 79.2 72.9
GPT-4o EN 5 80.7 65.7 77.2 70.6 49.2 65.0 86.5 76.8 84.3 75.5
GPT-4o AR 0 78.9 62.8 75.1 69.4 47.8 63.6 77.4 77.7 77.4 72.0
GPT-4o AR 5 79.5 66.8 76.6 70.1 49.7 64.8 82.6 75.7 81.1 74.1
Fanar EN 0 57.4 31.4 49.2 51.1 18.9 38.1 58.4 18.6 40.9 42.7
Fanar EN 5 63.3 58.8 62.4 54.4 35.4 49.1 69.2 63.5 68.0 59.8
Fanar AR 0 62.4 57.3 61.3 52.1 29.4 45.1 57.5 33.9 50.4 52.3
Fanar AR 5 69.7 63.7 68.4 58.0 40.7 53.5 76.3 73.6 75.8 65.9
Jais-30B-Chat EN 0 53.8 44.5 51.6 46.3 19.1 36.0 51.5 29.4 44.8 44.1
Jais-30B-Chat EN 5 54.6 45.8 52.6 43.0 18.4 34.0 48.2 23.9 40.1 42.2
Jais-30B-Chat AR 0 51.4 43.6 49.6 43.5 15.9 32.3 48.8 16.9 35.4 39.1
Jais-30B-Chat AR 5 50.0 43.6 48.6 42.5 17.0 32.7 47.3 15.8 33.8 38.3

Table B.4: LLMs results on MSA and DA GEC on the Dev sets of QALB-2014, QALB-
2015, and ZAEBUC. P-Lang is the prompt language either in English (EN) or Arabic
(AR). Best average F0.5 results for each LLM are underlined. Best overall results are in
bold.
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B.3 Error Type Statistics

QALB-2014 QALB-2015 ZAEBUC
2-Class 13-Class 43-Class Train Dev Test Train Dev Test-L1 Test-L2 Train Dev Test

E

Delete Delete 6,442 346 540 584 339 250 309 305 64 66
Merge-B Merge-B 15,063 797 795 377 231 625 199 849 180 133
Merge-I Merge-I 15,296 812 807 390 241 629 200 851 180 133

M
M 30 0 0 14 3 4 4 6 2 2
MI 1,360 69 59 400 220 56 169 127 30 25
MT 76 0 4 136 72 2 40 4 0 1

M+O MI+OH 243 17 15 9 9 8 5 7 1 8

O

O 3,255 166 164 75 52 144 70 296 64 68
OA 7,627 313 252 290 136 514 138 27 4 6
OC 466 27 19 45 23 17 26 30 7 7
OD 4,086 207 204 283 167 146 166 103 24 21
OH 90,579 4,785 4,632 1,076 599 4,499 587 1,905 401 451
OM 4,062 228 217 361 215 188 184 123 23 30
OR 8,358 425 446 763 415 369 362 162 32 36
OT 14,688 758 623 54 37 733 26 408 101 138
OW 1,885 149 107 32 12 77 9 12 4 2

OA+OH 480 19 12 4 1 23 0 1 1 1
OA+OR 215 8 6 4 4 11 3 0 1 0
OD+OG 573 32 32 22 15 23 9 11 4 2
OD+OH 317 11 17 13 2 10 2 8 1 1
OD+OM 104 4 5 12 7 1 6 0 2 1
OD+OR 675 33 26 61 32 22 32 8 2 2
OH+OM 2,339 134 123 231 106 114 109 54 15 13
OH+OT 1,468 56 65 2 1 71 1 31 9 9
OM+OR 382 15 19 62 27 23 15 17 0 4
OR+OT 193 10 7 4 4 2 1 7 0 0

O+X OH+XC 323 24 18 6 3 15 2 20 0 4
P P 11,379 598 687 855 453 446 483 237 51 36

S
S 536 41 19 188 125 26 103 44 14 21
SF 96 5 4 46 33 2 21 4 0 2
SW 4,804 201 229 887 502 186 422 121 22 28

X

X 3,668 216 182 144 59 161 57 106 26 17
XC 5,980 373 369 279 180 289 141 201 31 46

XC+XG 296 23 40 0 3 1 0 1 0 0
XC+XN 500 18 41 29 13 23 9 24 3 3
XF 852 63 25 835 494 35 463 51 12 14
XG 809 38 30 317 175 35 158 86 20 24
XM 225 15 6 151 91 12 68 14 6 3
XN 1,107 47 41 210 115 47 84 30 9 2
XT 155 16 9 46 26 6 24 15 3 4

Split Split 7,828 432 399 80 42 382 34 49 10 10
UNK UNK 6,835 331 300 969 454 257 416 361 78 61

C C C 795,510 41,875 39,690 33,007 19,004 38,063 17,651 18,411 3,839 3,683
1,021,165 53,737 51,285 43,353 24,742 48,547 22,808 25,127 5,276 5,118

Table B.5: The statistics of the different GED granularity error types we model across the
three datasets. The description of the labels in the 13-Class and 43-Class categories are
in Table 5.2. For the 2-Class labels, E refers to erroneous words and C refers to correct
words.
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Chapter 6 Appendix

C.1 LLMs Prompts

Prompt Lang Prompt

EN

You are a dialectal Arabic text normalization tool that can normalize
dialectal Arabic text into the Conventional Orthography for Dialectal
Arabic (CODA). CODA provides a standardized system for writing
Arabic dialects, which are often written informally or phonetically.
By using CODA, your task is to convert these informal, dialectal
texts into a consistent, standardized orthographic form, making them
more uniform while retaining the nuances of the original dialect.
Please standardize the following sentence marked with the tag
<input> Input Sentence </input> into the CODA convention. Avoid
altering the meaning by adding or removing information. Make sure
the normalized output sentence is in Arabic script. Output the
normalized sentence directly without providing any explanations.
Remember to format the CODA standardized output with the tag
<output> Your CODA Version </output>. Please start: <input> Input
Sentence </input>

AR

CODA CODA
CODA

CODA input input

output output
input input

  أنت أداة لتصحيح النصوص العربية العامية، حيث يمكنك تصحيح النصوص العامية
  إلى  الإملاء  القياسي  للعامية  العربية  .  يوفر  نظاما  موحدا  لكتابة

يقة  غير  رسمية  أو  صوتية.  باستخدام  ،   اللهجات  العربية  التي  تكتب  غالبا  بطر
  مهمتك هي تصحيح هذه النصوص العامية غير الرسمية إلى شكل إملائي موحد ومتسق،
  مع الحفاظ على الفروق الدقيقة للهجة الأصلية. يرجى تصحيح الجملة التالية المميزة بالوسم

يق   النص  المدخل  وفقا  لمعيار  تجنب  تغيير  المعنى  عن  طر
  إضافة أو إزالة معلومات. أخرج الجملة مباشرة دون أي تفسيرات. تذكر تنسيق النص

  المصحح  باستخدام  الوسم  النص  المصحح  الرجاء  البدء:
  النص  المدخل

(  )  

.  <  />  <  >  

<  />  <  >  
<  />  <  >  

Table C.1: 0-shot prompts used to evaluate LLMs performance on CODAfication. Prompt
Lang is the prompt language either in English (EN) or Arabic (AR).
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Prompt Lang Prompt

EN

You are a dialectal Arabic text normalization tool that can normalize dialectal Arabic
text into the Conventional Orthography for Dialectal Arabic (CODA). CODA provides
a standardized system for writing Arabic dialects, which are often written informally or
phonetically. By using CODA, your task is to convert these informal, dialectal texts into
a consistent, standardized orthographic form, making them more uniform while
retaining the nuances of the original dialect. We will provide you with example
sentences marked with the tag <input> Input Sentence </input>, which are written in
dialectal Arabic. These sentences are followed by their CODA versions, marked with
<output> Corrected Sentence </output>, as reviewed and edited by human experts.
Please standardize the following sentence marked with the tag <input> Input Sentence
</input> into the CODA convention. Avoid altering the meaning by adding or removing
information. Output the normalized sentence directly without providing any
explanations. Here are some in-context examples:
(1) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(2) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(3) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(4) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(5) <input> Input Sentence </input>: <output> Corrected Sentence </output>
Please feel free to refer to these examples.
Remember to format the corrected output with the tag <output> Your Corrected Version
</output>. Please start: <input> Input Sentence </input>

AR

CODA CODA

input
CODA input

output output
CODA input input

output output>: <input input
output output>: <input input
output output>: <input input
output output>: <input input
output input

input output output
input

CODA

١
٢
٣
٤

output>: <input ٥

  أنت أداة لتصحيح النصوص العربية العامية، حيث يمكنك تصحيح النصوص العامية إلى الإملاء القياسي للعامية
يقة  غير  رسمية  أو   العربية  .  يوفر  نظاما  موحدا  لكتابة  اللهجات  العربية  التي  تكتب  غالبا  بطر
  صوتية.  باستخدام  ،  مهمتك  هي  تصحيح  هذه  النصوص  العامية  غير  الرسمية  إلى  شكل  إملائي  موحد
  ومتسق،  مع  الحفاظ  على  الفروق  الدقيقة  للهجة  الأصلية.  سنزودك  بجمل  أمثلة  مميزة  بالوسم  النص

  المدخل  ،  وهي  مكتوبة  بالعامية  العربية.  تتبع  هذه  الجمل  نسخها  المطابقة  لمعيار  ،  والمحددة
يين.  يرجى   بالوسم  النص  المصحح  ،  والتي  تمت  مراجعتها  وتحريرها  من  قبل  خبراء  لغو

  تصحيح  الجملة  التالية  المميزة  بالوسم  النص  المدخل  .  تجنب  تغيير  المعنى
يق إضافة أو إزالة معلومات. أخرج الجملة مباشرة دون أي تفسيرات. إليك بعض الأمثلة ضمن السياق:   عن طر

  (  )  النص  المدخل  النص  المصحح
  (  )  النص  المدخل  النص  المصحح
  (  )  النص  المدخل  النص  المصحح
  (  )  النص  المدخل  النص  المصحح
  (  )  النص  المدخل  </  >  النص  المصحح

  لا تتردد في الرجوع إلى هذه الأمثلة.
  تذكر  تنسيق  النص  المصحح  باستخدام  الوسم  النص  المصحح  الرجاء  البدء:

  النص  المدخل

(  )  

<  >  
<  />  

<  />  <  >  
  <  >  </  >  وفقا  لمعیار

<  />  <  />  <  >  
<  />  <  />  <  >  
<  />  <  />  <  >  
<  />  <  />  <  >  
<  />  <  >  

<  >  <  />  <  >  
<  />  

Table C.2: 5-shot prompts used to evaluate LLMs performance on CODAfication. Prompt
Lang is the prompt language either in English (EN) or Arabic (AR).
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Prompt Lang Prompt

EN

You are a dialectal Arabic text normalization tool that can normalize dialectal Arabic
text into the Conventional Orthography for Dialectal Arabic (CODA). CODA
provides a standardized system for writing Arabic dialects, which are often written
informally or phonetically. By using CODA, your task is to convert these informal,
dialectal texts into a consistent, standardized orthographic form, making them more
uniform while retaining the nuances of the original dialect. We will provide you with
example sentences in the {city} dialect marked with the tag <input> Input Sentence
</input>. These sentences are followed by their CODA versions, marked with
<output> Corrected Sentence </output>, as reviewed and edited by human experts.
Please standardize the following sentence marked with the tag <input> Input
Sentence </input> into the CODA convention. Avoid altering the meaning by adding
or removing information. Output the normalized sentence directly without providing
any explanations. Here are some in-context examples:
(1) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(2) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(3) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(4) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(5) <input> Input Sentence </input>: <output> Corrected Sentence </output>
Please feel free to refer to these examples.
Remember to format the corrected output with the tag <output> Your Corrected
Version </output>. Please start: <input> Input Sentence </input>

Table C.3: 5-shot prompts with specified dialect used to evaluate LLMs performance on
CODAfication. Prompt Lang is the prompt language either in English (EN) or Arabic
(AR).
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C.2 LLMs Results

Model P-Lang Shots P R F0.5
GPT-3.5-turbo EN 0 22.8 17.7 21.5
GPT-3.5-turbo EN 5 35.5 29.7 34.1
GPT-3.5-turbo AR 0 24.2 22.7 23.9
GPT-3.5-turbo AR 5 27.0 26.5 26.9
GPT-4o EN 0 28.8 25.5 28.1
GPT-4o EN 5 53.7 54.4 53.8
GPT-4o AR 0 36.4 33.5 35.8
GPT-4o AR 5 50.1 48.6 49.8
Fanar EN 0 13.7 14.6 13.9
Fanar EN 5 22.4 26.8 23.1
Fanar AR 0 17.2 19.0 17.5
Fanar AR 5 24.5 28.8 25.2
Jais-30B-Chat EN 0 9.7 9.8 9.7
Jais-30B-Chat EN 5 12.8 13.4 12.9
Jais-30B-Chat AR 0 9.4 9.2 9.4
Jais-30B-Chat AR 5 12.1 12.5 12.2

Table C.4: LLMs results on the Dev set of MADAR CODA. P-Lang is the prompt
language either in English (EN) or Arabic (AR). Best F0.5 results for each LLM are
underlined.
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Chapter 7 Appendix

D.1 Edit Tagging Results

MADAR CODA APGC v2.0
Model Input Comp. Prune P R F0.5 P R F0.5
AraBERTv02 Word % - 87.9 66.5 82.6 89.1 85.3 88.3
AraBERTv02 Subword % - 87.6 76.8 85.2 89.2 86.7 88.7
AraBERTv02 Word " - 85.6 76.9 83.7 89.3 88.3 89.1
AraBERTv02 Subword " - 86.9 79.2 85.2 88.9 88.2 88.7
ARBERTv2 Word % - 86.4 61.0 79.8 87.9 82.4 86.7
ARBERTv2 Subword % - 84.5 69.0 80.8 87.4 84.9 86.9
ARBERTv2 Word " - 81.8 68.4 78.7 87.5 86.4 87.2
ARBERTv2 Subword " - 84.2 70.8 81.2 87.2 86.7 87.1
CAMeLBERT Word % - 88.3 66.4 82.8 88.9 85.1 88.1
CAMeLBERT Subword % - 87.1 76.8 84.8 88.1 87.5 88.0
CAMeLBERT Word " - 85.6 76.0 83.5 88.5 87.7 88.3
CAMeLBERT Subword " - 87.0 78.8 85.2 88.2 87.4 88.0
AraBERTv02 Subword " 10 89.1 81.7 86.0 - - -
AraBERTv02 Subword " 20 87.7 73.1 84.4 - - -
AraBERTv02 Subword " 30 88.3 72.1 84.5 - - -
CAMeLBERT Subword " 10 88.4 76.3 85.7 - - -
CAMeLBERT Subword " 20 88.2 72.6 84.6 - - -
CAMeLBERT Subword " 30 88.7 71.3 84.6 - - -
AraBERTv02 Word " 10 - - - 89.7 87.3 89.2
AraBERTv02 Word " 20 - - - 89.4 86.3 88.8
AraBERTv02 Word " 30 - - - 89.7 85.6 88.9
CAMeLBERT Word " 10 - - - 88.6 87.0 88.3
CAMeLBERT Word " 20 - - - 88.9 86.3 88.3
CAMeLBERT Word " 30 - - - 89.4 85.3 88.5

Table D.1: CODAfication and gender rewriting results on the Dev sets of MADAR
CODA and APGC v2.0. Input is the input unit representation (word or subword). Comp.
indicates whether the edit is compressed. Pruning experiments were conducted using the
top two models (AraBERTv02 and CAMeLBERT). Best results are in bold.
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QALB-2014 QALB-2015 ZAEBUC
Model Input Comp. Subset Prune P R F0.5 P R F0.5 P R F0.5
AraBERTv02 Word % All - 81.0 64.3 77.0 63.0 36.5 55.0 84.8 69.5 81.2
AraBERTv02 Subword % All - 81.0 67.8 77.9 63.8 37.1 55.8 84.4 71.3 81.4
AraBERTv02 Word " All - 80.8 66.6 77.5 61.3 41.5 55.9 83.8 71.4 81.0
AraBERTv02 Subword " All - 81.1 69.1 78.4 62.6 40.4 56.4 84.3 72.9 81.7
ARBERTv2 Word % All - 78.9 57.7 73.5 58.0 32.5 50.2 82.2 54.8 74.8
ARBERTv2 Subword % All - 78.7 60.8 74.3 60.0 33.1 51.6 79.7 58.1 74.2
ARBERTv2 Word " All - 77.8 61.4 73.8 57.9 35.5 51.4 80.7 62.8 76.3
ARBERTv2 Subword " All - 78.6 60.0 74.0 59.8 36.7 53.1 82.7 62.1 77.5
CAMeLBERT Word % All - 81.2 61.5 76.3 63.0 35.1 54.3 84.6 66.4 80.2
CAMeLBERT Subword % All - 80.4 65.2 76.9 63.2 37.5 55.6 83.5 69.3 80.2
CAMeLBERT Word " All - 79.9 65.4 76.5 62.3 39.9 56.0 84.2 69.3 80.7
CAMeLBERT Subword " All - 80.6 67.4 77.6 63.2 42.0 57.4 84.6 70.8 81.4
AraBERTv02 Subword " All 10 81.8 68.8 78.8 64.8 40.6 57.9 84.5 71.9 81.6
AraBERTv02 Subword " All 20 81.4 68.6 78.5 65.4 38.7 57.5 85.3 72.0 82.2
AraBERTv02 Subword " All 30 81.6 68.1 78.5 65.7 39.0 57.8 85.8 72.3 82.7
CAMeLBERT Subword " All 10 81.2 67.4 78.0 65.1 39.9 57.8 85.1 71.0 81.8
CAMeLBERT Subword " All 20 81.3 66.7 77.9 67.6 36.7 57.9 84.4 70.1 81.1
CAMeLBERT Subword " All 30 81.1 67.5 77.9 65.6 39.2 57.8 84.7 70.0 81.3

AraBERTv02 Subword " NoPnx - 88.3 77.7 85.9 62.5 35.3 54.2 87.2 77.0 85.0
AraBERTv02 Subword " NoPnx 10 88.8 78.1 86.4 69.1 30.7 55.2 87.6 76.1 85.0
AraBERTv02 Subword " NoPnx 20 89.0 77.8 86.5 70.4 30.1 55.5 87.9 75.8 85.1
AraBERTv02 Subword " NoPnx 30 89.4 77.5 86.7 70.9 28.7 54.8 88.1 76.8 85.6
AraBERTv02 Subword " Pnx - 90.6 83.0 89.0 90.5 85.6 89.5 96.8 94.0 96.2
AraBERTv02 Subword " Pnx 10 89.5 83.6 88.3 90.5 85.1 89.4 96.9 93.8 96.3
AraBERTv02 Subword " Pnx 20 90.7 82.8 89.0 90.7 84.9 89.5 96.7 93.6 96.1
AraBERTv02 Subword " Pnx 30 90.1 83.6 88.7 90.5 85.0 89.4 96.5 94.0 96.0

Table D.2: MSA GEC results on the Dev sets of QALB-2014, QALB-2015, and ZAEBUC.
Input is the input unit representation (word or subword). Comp. indicates whether the
edit is compressed. Subset specifies whether the edits capture all errors, punctuation-only
errors (Pnx), or non-punctuation errors (NoPnx). NoPnx models are evaluated after
removing punctuation, while Pnx models are evaluated on a version of the Dev set where
all non-punctuation errors are corrected. Pruning experiments were conducted using
the top two models (AraBERTv02 and CAMeLBERT), while punctuation segregation
experiments used the best model (AraBERTv02). Best All results are in bold. Best
NoPnx and Pnx results are underlined.



144

Bibliography

Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and Hamdy Mubarak. 2016. Farasa:

A fast and furious segmenter for Arabic. In Proceedings of the Conference of the North

American Chapter of the Association for Computational Linguistics (NAACL), pages

11–16, San Diego, California.

Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish, and Younes

Samih. 2021. Pre-training bert on arabic tweets: Practical considerations. Preprint,

arXiv:2102.10684.

Muhammad Abdul-Mageed, Hassan Alhuzali, and Mohamed Elaraby. 2018a. You

tweet what you speak: A city-level dataset of Arabic dialects. In Proceedings of the

11th Language Resources and Evaluation Conference, Miyazaki, Japan. European

Language Resource Association.

Muhammad Abdul-Mageed, Hassan Alhuzali, and Mohamed Elaraby. 2018b. You

tweet what you speak: A city-level dataset of Arabic dialects. In Proceedings of the

Eleventh International Conference on Language Resources and Evaluation (LREC

2018), Miyazaki, Japan. European Language Resources Association (ELRA).

Muhammad Abdul-Mageed, AbdelRahim Elmadany, and El Moatez Billah Nagoudi.

2021a. ARBERT & MARBERT: Deep bidirectional transformers for Arabic. In

https://arxiv.org/abs/2102.10684
https://www.aclweb.org/anthology/L18-1577
https://www.aclweb.org/anthology/L18-1577
https://aclanthology.org/L18-1577/
https://aclanthology.org/L18-1577/
https://doi.org/10.18653/v1/2021.acl-long.551


145
Proceedings of the 59th Annual Meeting of the Association for Computational Lin-

guistics and the 11th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pages 7088–7105, Online. Association for Computational

Linguistics.

Muhammad Abdul-Mageed, AbdelRahim Elmadany, Chiyu Zhang, El Moatez Billah

Nagoudi, Houda Bouamor, and Nizar Habash. 2023. NADI 2023: The fourth nuanced

Arabic dialect identification shared task. In Proceedings of ArabicNLP 2023, pages

600–613, Singapore (Hybrid). Association for Computational Linguistics.

Muhammad Abdul-Mageed, Amr Keleg, AbdelRahim Elmadany, Chiyu Zhang, Injy

Hamed, Walid Magdy, Houda Bouamor, and Nizar Habash. 2024. NADI 2024: The

fifth nuanced Arabic dialect identification shared task. In Proceedings of The Second

Arabic Natural Language Processing Conference, pages 709–728, Bangkok, Thailand.

Association for Computational Linguistics.

Muhammad Abdul-Mageed, Chiyu Zhang, AbdelRahim Elmadany, Houda Bouamor,

and Nizar Habash. 2021b. NADI 2021: The second nuanced Arabic dialect identifi-

cation shared task. In Proceedings of the Sixth Arabic Natural Language Processing

Workshop, pages 244–259, Kyiv, Ukraine (Virtual). Association for Computational

Linguistics.

Muhammad Abdul-Mageed, Chiyu Zhang, AbdelRahim Elmadany, Houda Bouamor,

and Nizar Habash. 2022. NADI 2022: The third nuanced Arabic dialect identification

shared task. In Proceedings of the Seventh Arabic Natural Language Processing Work-

shop (WANLP), pages 85–97, Abu Dhabi, United Arab Emirates (Hybrid). Association

for Computational Linguistics.

https://doi.org/10.18653/v1/2023.arabicnlp-1.62
https://doi.org/10.18653/v1/2023.arabicnlp-1.62
https://doi.org/10.18653/v1/2024.arabicnlp-1.79
https://doi.org/10.18653/v1/2024.arabicnlp-1.79
https://aclanthology.org/2021.wanlp-1.28/
https://aclanthology.org/2021.wanlp-1.28/
https://doi.org/10.18653/v1/2022.wanlp-1.9
https://doi.org/10.18653/v1/2022.wanlp-1.9


146
Sweta Agrawal and Marine Carpuat. 2019. Controlling text complexity in neural machine

translation. In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 1549–1564, Hong Kong, China. Association for

Computational Linguistics.

Sweta Agrawal and Marine Carpuat. 2023. Controlling pre-trained language models

for grade-specific text simplification. In Proceedings of the 2023 Conference on

Empirical Methods in Natural Language Processing, pages 12807–12819, Singapore.

Association for Computational Linguistics.

Mohamed Al-Badrashiny and Mona Diab. 2016. LILI: A simple language independent

approach for language identification. In Proceedings of the International Conference

on Computational Linguistics (COLING), Osaka, Japan.

Mohamed Al-Badrashiny, Ramy Eskander, Nizar Habash, and Owen Rambow. 2014.

Automatic transliteration of Romanized dialectal Arabic. In Proceedings of the Eigh-

teenth Conference on Computational Natural Language Learning, pages 30–38, Ann

Arbor, Michigan. Association for Computational Linguistics.

Rania Al-Sabbagh and Roxana Girju. 2012. YADAC: Yet another dialectal Arabic

corpus. In Proceedings of the Eighth International Conference on Language Resources

and Evaluation (LREC‘12), pages 2882–2889, Istanbul, Turkey. European Language

Resources Association (ELRA).

Nora Al-Twairesh, Rawan Al-Matham, Nora Madi, Nada Almugren, Al-Hanouf Al-

Aljmi, Shahad Alshalan, Raghad Alshalan, Nafla Alrumayyan, Shams Al-Manea,

Sumayah Bawazeer, Nourah Al-Mutlaq, Nada Almanea, Waad Bin Huwaymil, Dalal

https://doi.org/10.18653/v1/D19-1166
https://doi.org/10.18653/v1/D19-1166
https://doi.org/10.18653/v1/2023.emnlp-main.790
https://doi.org/10.18653/v1/2023.emnlp-main.790
https://doi.org/10.3115/v1/W14-1604
https://aclanthology.org/L12-1387/
https://aclanthology.org/L12-1387/


147
Alqusair, Reem Alotaibi, Suha Al-Senaydi, and Abeer Alfutamani. 2018. SUAR:

Towards building a corpus for the Saudi dialect. In Proceedings of the International

Conference on Arabic Computational Linguistics (ACLing).

Abdullah Alfaifi and Eric Atwell. 2012. Arabic learner corpora (alc): a taxonomy of

coding errors. In The 8th International Computing Conference in Arabic.

Abdullah Alfaifi, Eric Atwell, and Ghazi Abuhakema. 2013. Error annotation of the

Arabic learner corpus. In Language Processing and Knowledge in the Web, pages

14–22. Springer.

Bashar Alhafni, Sarah Al-Towaity, Ziyad Fawzy, Fatema Nassar, Fadhl Eryani, Houda

Bouamor, and Nizar Habash. 2024a. Exploiting dialect identification in automatic

dialectal text normalization. In Proceedings of The Second Arabic Natural Language

Processing Conference, pages 42–54, Bangkok, Thailand. Association for Computa-

tional Linguistics.

Bashar Alhafni, Nizar Habash, and Houda Bouamor. 2020. Gender-aware reinflection

using linguistically enhanced neural models. In Proceedings of the Second Workshop

on Gender Bias in Natural Language Processing, pages 139–150, Barcelona, Spain

(Online). Association for Computational Linguistics.

Bashar Alhafni, Nizar Habash, and Houda Bouamor. 2022a. The Arabic parallel gender

corpus 2.0: Extensions and analyses. In Proceedings of the Thirteenth Language

Resources and Evaluation Conference, pages 1870–1884, Marseille, France. European

Language Resources Association.

Bashar Alhafni, Nizar Habash, and Houda Bouamor. 2022b. User-centric gender rewrit-

ing. In Proceedings of the 2022 Conference of the North American Chapter of the

https://doi.org/10.18653/v1/2024.arabicnlp-1.4
https://doi.org/10.18653/v1/2024.arabicnlp-1.4
https://aclanthology.org/2020.gebnlp-1.12/
https://aclanthology.org/2020.gebnlp-1.12/
https://aclanthology.org/2022.lrec-1.199/
https://aclanthology.org/2022.lrec-1.199/
https://doi.org/10.18653/v1/2022.naacl-main.46
https://doi.org/10.18653/v1/2022.naacl-main.46


148
Association for Computational Linguistics: Human Language Technologies, pages

618–631, Seattle, United States. Association for Computational Linguistics.

Bashar Alhafni, Nizar Habash, Houda Bouamor, Ossama Obeid, Sultan Alrowili, Daliyah

AlZeer, Kawla Mohmad Shnqiti, Ahmed Elbakry, Muhammad ElNokrashy, Mohamed

Gabr, Abderrahmane Issam, Abdelrahim Qaddoumi, Vijay Shanker, and Mahmoud

Zyate. 2022c. The shared task on gender rewriting. In Proceedings of the Seventh

Arabic Natural Language Processing Workshop (WANLP), pages 98–107, Abu Dhabi,

United Arab Emirates (Hybrid). Association for Computational Linguistics.

Bashar Alhafni, Reem Hazim, Juan David Pineros Liberato, Muhamed Al Khalil, and

Nizar Habash. 2024b. The SAMER Arabic text simplification corpus. In Proceedings

of the 2024 Joint International Conference on Computational Linguistics, Language

Resources and Evaluation (LREC-COLING 2024), pages 16079–16093, Torino, Italia.

ELRA and ICCL.

Bashar Alhafni, Go Inoue, Christian Khairallah, and Nizar Habash. 2023a. Advancements

in Arabic grammatical error detection and correction: An empirical investigation. In

Proceedings of the 2023 Conference on Empirical Methods in Natural Language

Processing, pages 6430–6448, Singapore. Association for Computational Linguistics.

Bashar Alhafni, Vivek Kulkarni, Dhruv Kumar, and Vipul Raheja. 2024c. Personalized

text generation with fine-grained linguistic control. In Proceedings of the 1st Workshop

on Personalization of Generative AI Systems (PERSONALIZE 2024), pages 88–101,

St. Julians, Malta. Association for Computational Linguistics.

Bashar Alhafni, Ossama Obeid, and Nizar Habash. 2023b. The user-aware Arabic

gender rewriter. In Proceedings of the First Workshop on Gender-Inclusive Translation

https://doi.org/10.18653/v1/2022.wanlp-1.10
https://aclanthology.org/2024.lrec-main.1398/
https://doi.org/10.18653/v1/2023.emnlp-main.396
https://doi.org/10.18653/v1/2023.emnlp-main.396
https://aclanthology.org/2024.personalize-1.8/
https://aclanthology.org/2024.personalize-1.8/
https://aclanthology.org/2023.gitt-1.1/
https://aclanthology.org/2023.gitt-1.1/


149
Technologies, pages 3–11, Tampere, Finland. European Association for Machine

Translation.

Ahmed Ali, Salam Khalifa, and Nizar Habash. 2019. Towards Variability Resistant

Dialectal Speech Evaluation. In Proc. Interspeech 2019, pages 336–340.

Manar Alkhatib, Azza Abdel Monem, and Khaled Shaalan. 2020. Deep learning for

Arabic error detection and correction. ACM Trans. Asian Low-Resour. Lang. Inf.

Process., 19(5).

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli,

Ruxandra Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien

Launay, Quentin Malartic, Daniele Mazzotta, Badreddine Noune, Baptiste Pannier,

and Guilherme Penedo. 2023. The falcon series of open language models. Preprint,

arXiv:2311.16867.

Khalid Alnajjar and Mika Hämäläinen. 2024. Normalization of arabic dialects into mod-

ern standard arabic using. Journal of Data Mining & Digital Humanities, NLP4DH.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020. AraBERT: Transformer-based

model for Arabic language understanding. In Proceedings of the 4th Workshop on

Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive

Language Detection, pages 9–15, Marseille, France. European Language Resource

Association.

Akari Asai, Sneha Kudugunta, Xinyan Yu, Terra Blevins, Hila Gonen, Machel Reid, Yulia

Tsvetkov, Sebastian Ruder, and Hannaneh Hajishirzi. 2024. BUFFET: Benchmarking

large language models for few-shot cross-lingual transfer. In Proceedings of the 2024

Conference of the North American Chapter of the Association for Computational

https://doi.org/10.21437/Interspeech.2019-2692
https://doi.org/10.21437/Interspeech.2019-2692
https://doi.org/10.1145/3373266
https://doi.org/10.1145/3373266
https://arxiv.org/abs/2311.16867
https://doi.org/10.46298/jdmdh.13146
https://doi.org/10.46298/jdmdh.13146
https://aclanthology.org/2020.osact-1.2/
https://aclanthology.org/2020.osact-1.2/
https://doi.org/10.18653/v1/2024.naacl-long.100
https://doi.org/10.18653/v1/2024.naacl-long.100


150
Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 1771–

1800, Mexico City, Mexico. Association for Computational Linguistics.

Mohammed Attia, Mohamed Al-Badrashiny, and Mona Diab. 2014. GWU-HASP:

Hybrid Arabic spelling and punctuation corrector. In Proceedings of the EMNLP 2014

Workshop on Arabic Natural Language Processing (ANLP), pages 148–154, Doha,

Qatar. Association for Computational Linguistics.

Dana Awad. 2013. La ponctuation en Arabe: histoire et règles. etude constrative avec le

français et l’anglais.

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal, Sabyasachi Ghosh, and Vihari Piratla.

2019. Parallel iterative edit models for local sequence transduction. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), pages 4260–4270, Hong Kong, China. Association for Computational Lin-

guistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine transla-

tion by jointly learning to align and translate. CoRR, abs/1409.0473.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine trans-

lation by jointly learning to align and translate. In Proceedings of the International

Conference on Learning Representations (ICLR).

Marion Bartl, Malvina Nissim, and Albert Gatt. 2020. Unmasking contextual stereotypes:

Measuring and mitigating BERT‘s gender bias. In Proceedings of the Second Workshop

on Gender Bias in Natural Language Processing, pages 1–16, Barcelona, Spain

(Online). Association for Computational Linguistics.

https://doi.org/10.3115/v1/W14-3620
https://doi.org/10.3115/v1/W14-3620
https://doi.org/10.18653/v1/D19-1435
https://aclanthology.org/2020.gebnlp-1.1/
https://aclanthology.org/2020.gebnlp-1.1/


151
Christine Basta, Marta R. Costa-jussà, and José A. R. Fonollosa. 2020. Towards mit-

igating gender bias in a decoder-based neural machine translation model by adding

contextual information. In Proceedings of the Fourth Widening Natural Language

Processing Workshop, pages 99–102, Seattle, USA. Association for Computational

Linguistics.

Kenneth R. Beesley. 1996. Arabic finite-state morphological analysis and generation.

In COLING 1996 Volume 1: The 16th International Conference on Computational

Linguistics.

Riadh Belkebir and Nizar Habash. 2021. Automatic error type annotation for Arabic. In

Proceedings of the 25th Conference on Computational Natural Language Learning,

pages 596–606, Online. Association for Computational Linguistics.

Samuel Bell, Helen Yannakoudakis, and Marek Rei. 2019. Context is key: Grammatical

error detection with contextual word representations. In Proceedings of the Fourteenth

Workshop on Innovative Use of NLP for Building Educational Applications, pages

103–115, Florence, Italy. Association for Computational Linguistics.

Luisa Bentivogli, Beatrice Savoldi, Matteo Negri, Mattia A. Di Gangi, Roldano Cattoni,

and Marco Turchi. 2020. Gender in danger? evaluating speech translation technol-

ogy on the MuST-SHE corpus. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 6923–6933, Online. Association for

Computational Linguistics.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. 2020. Language

(technology) is power: A critical survey of “bias” in NLP. In Proceedings of the 58th

https://doi.org/10.18653/v1/2020.winlp-1.25
https://doi.org/10.18653/v1/2020.winlp-1.25
https://doi.org/10.18653/v1/2020.winlp-1.25
https://aclanthology.org/C96-1017/
https://doi.org/10.18653/v1/2021.conll-1.47
https://doi.org/10.18653/v1/W19-4410
https://doi.org/10.18653/v1/W19-4410
https://doi.org/10.18653/v1/2020.acl-main.619
https://doi.org/10.18653/v1/2020.acl-main.619
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/2020.acl-main.485


152
Annual Meeting of the Association for Computational Linguistics, pages 5454–5476,

Online. Association for Computational Linguistics.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T

Kalai. 2016. Man is to computer programmer as woman is to homemaker? debiasing

word embeddings. In Advances in Neural Information Processing Systems, volume 29.

Curran Associates, Inc.

Shikha Bordia and Samuel R. Bowman. 2019. Identifying and reducing gender bias in

word-level language models. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Student Research

Workshop, pages 7–15, Minneapolis, Minnesota. Association for Computational Lin-

guistics.

Houda Bouamor, Nizar Habash, and Kemal Oflazer. 2014. A multidialectal parallel

corpus of Arabic. In Proceedings of the Ninth International Conference on Language

Resources and Evaluation (LREC‘14), pages 1240–1245, Reykjavik, Iceland. European

Language Resources Association (ELRA).

Houda Bouamor, Nizar Habash, Mohammad Salameh, Wajdi Zaghouani, Owen Rambow,

Dana Abdulrahim, Ossama Obeid, Salam Khalifa, Fadhl Eryani, Alexander Erdmann,

and Kemal Oflazer. 2018. The MADAR Arabic dialect corpus and lexicon. In

Proceedings of the Eleventh International Conference on Language Resources and

Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association

(ELRA).

Houda Bouamor, Sabit Hassan, and Nizar Habash. 2019. The MADAR Shared Task

https://proceedings.neurips.cc/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://doi.org/10.18653/v1/N19-3002
https://doi.org/10.18653/v1/N19-3002
https://aclanthology.org/L14-1435/
https://aclanthology.org/L14-1435/
https://aclanthology.org/L18-1535/


153
on Arabic Fine-Grained Dialect Identification. In Proceedings of the Fourth Arabic

Natural Language Processing Workshop (WANLP19), Florence, Italy.

Fethi Bougares and Houda Bouamor. 2015. UMMU@QALB-2015 shared task: Char-

acter and word level SMT pipeline for automatic error correction of Arabic text. In

Proceedings of the Second Workshop on Arabic Natural Language Processing, pages

166–172, Beijing, China. Association for Computational Linguistics.

Adriane Boyd. 2018. Using Wikipedia edits in low resource grammatical error correction.

In Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy

User-generated Text, pages 79–84, Brussels, Belgium. Association for Computational

Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, and 12 others. 2020. Language

models are few-shot learners. In Advances in Neural Information Processing Systems,

volume 33, pages 1877–1901. Curran Associates, Inc.

Christopher Bryant, Mariano Felice, Øistein E. Andersen, and Ted Briscoe. 2019. The

BEA-2019 shared task on grammatical error correction. In Proceedings of the Four-

teenth Workshop on Innovative Use of NLP for Building Educational Applications,

pages 52–75, Florence, Italy. Association for Computational Linguistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe. 2017. Automatic annotation and

evaluation of error types for grammatical error correction. In Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics (Volume 1:

https://doi.org/10.18653/v1/W15-3221
https://doi.org/10.18653/v1/W15-3221
https://doi.org/10.18653/v1/W18-6111
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074


154
Long Papers), pages 793–805, Vancouver, Canada. Association for Computational

Linguistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza Qorib, Hannan Cao, Hwee Tou Ng,

and Ted Briscoe. 2023. Grammatical Error Correction: A Survey of the State of the

Art. Computational Linguistics, 49(3):643–701.

Tim Buckwalter. 2002. Buckwalter Arabic morphological analyzer version 1.0. Linguistic

Data Consortium (LDC) catalog number LDC2002L49, ISBN 1-58563-257-0.

Tim Buckwalter. 2004a. Issues in Arabic Orthography and Morphology Analysis. In

Proceedings of the Workshop on Computational Approaches to Arabic Script-based

Languages (CAASL), pages 31–34, Geneva, Switzerland.

Tim Buckwalter. 2004b. Issues in Arabic orthography and morphology analysis. In

Proceedings of the Workshop on Computational Approaches to Arabic Script-based

Languages, pages 31–34, Geneva, Switzerland. COLING.

Yang Trista Cao and III Daumé, Hal. 2021. Toward gender-inclusive coreference res-

olution: An analysis of gender and bias throughout the machine learning lifecycle*.

Computational Linguistics, 47(3):615–661.

Amanda Cercas Curry, Judy Robertson, and Verena Rieser. 2020. Conversational assis-

tants and gender stereotypes: Public perceptions and desiderata for voice personas. In

Proceedings of the Second Workshop on Gender Bias in Natural Language Processing,

pages 72–78, Barcelona, Spain (Online). Association for Computational Linguistics.

Junyi Chai, Reid Pryzant, Victor Ye Dong, Konstantin Golobokov, Chenguang Zhu, and

Yi Liu. 2022. Fast: Improving controllability for text generation with feedback aware

self-training. Preprint, arXiv:2210.03167.

https://doi.org/10.1162/coli_a_00478
https://doi.org/10.1162/coli_a_00478
https://aclanthology.org/W04-1606/
https://doi.org/10.1162/coli_a_00413
https://doi.org/10.1162/coli_a_00413
https://aclanthology.org/2020.gebnlp-1.7/
https://aclanthology.org/2020.gebnlp-1.7/
https://arxiv.org/abs/2210.03167
https://arxiv.org/abs/2210.03167


155
Alvin Chan, Yew-Soon Ong, Bill Pung, Aston Zhang, and Jie Fu. 2022. Cocon: A

self-supervised approach for controlled text generation. Preprint, arXiv:2006.03535.

Eugene Charniak, Kevin Knight, and Kenji Yamada. 2003. Syntax-based language

models for statistical machine translation. In Proceedings of Machine Translation

Summit IX: Papers, New Orleans, USA.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr

Dollar, and C. Lawrence Zitnick. 2015. Microsoft coco captions: Data collection and

evaluation server. Preprint, arXiv:1504.00325.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations

using RNN encoder–decoder for statistical machine translation. In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),

pages 1724–1734, Doha, Qatar. Association for Computational Linguistics.

Martin Chodorow, Joel Tetreault, and Na-Rae Han. 2007. Detection of grammatical

errors involving prepositions. In Proceedings of the Fourth ACL-SIGSEM Workshop

on Prepositions, pages 25–30, Prague, Czech Republic. Association for Computational

Linguistics.

Ana Cimitan, Ana Alves Pinto, and Michaela Geierhos. 2024. Curation of benchmark tem-

plates for measuring gender bias in named entity recognition models. In Proceedings

of the 2024 Joint International Conference on Computational Linguistics, Language

Resources and Evaluation (LREC-COLING 2024), pages 4238–4246, Torino, Italia.

ELRA and ICCL.

Chloe Ciora, Nur Iren, and Malihe Alikhani. 2021. Examining covert gender bias: A case

https://arxiv.org/abs/2006.03535
https://arxiv.org/abs/2006.03535
https://aclanthology.org/2003.mtsummit-papers.6/
https://aclanthology.org/2003.mtsummit-papers.6/
https://arxiv.org/abs/1504.00325
https://arxiv.org/abs/1504.00325
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://aclanthology.org/W07-1604/
https://aclanthology.org/W07-1604/
https://aclanthology.org/2024.lrec-main.378/
https://aclanthology.org/2024.lrec-main.378/
https://doi.org/10.18653/v1/2021.inlg-1.7
https://doi.org/10.18653/v1/2021.inlg-1.7


156
study in Turkish and English machine translation models. In Proceedings of the 14th

International Conference on Natural Language Generation, pages 55–63, Aberdeen,

Scotland, UK. Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020. Elec-

tra: Pre-training text encoders as discriminators rather than generators. In International

Conference on Learning Representations.

Marta R. Costa-jussà and Adrià de Jorge. 2020. Fine-tuning neural machine translation

on gender-balanced datasets. In Proceedings of the Second Workshop on Gender Bias

in Natural Language Processing, pages 26–34, Barcelona, Spain (Online). Association

for Computational Linguistics.

Ryan Cotterell and Chris Callison-Burch. 2014. A multi-dialect, multi-genre corpus of

informal written Arabic. In Proceedings of the Ninth International Conference on

Language Resources and Evaluation (LREC‘14), pages 241–245, Reykjavik, Iceland.

European Language Resources Association (ELRA).

C. o. E. Council of Europe. 2001. Common european framework of reference for

languages: learning, teaching, assessment. Cambridge University Press.

Steven Coyne, Keisuke Sakaguchi, Diana Galvan-Sosa, Michael Zock, and Kentaro Inui.

2023. Analyzing the performance of gpt-3.5 and gpt-4 in grammatical error correction.

Preprint, arXiv:2303.14342.

Daniel Dahlmeier and Hwee Tou Ng. 2011. Grammatical error correction with alternating

structure optimization. In Proceedings of the 49th Annual Meeting of the Associa-

tion for Computational Linguistics: Human Language Technologies, pages 915–923,

Portland, Oregon, USA. Association for Computational Linguistics.

https://doi.org/10.18653/v1/2021.inlg-1.7
https://doi.org/10.18653/v1/2021.inlg-1.7
https://doi.org/10.18653/v1/2021.inlg-1.7
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://aclanthology.org/2020.gebnlp-1.3/
https://aclanthology.org/2020.gebnlp-1.3/
https://aclanthology.org/L14-1510/
https://aclanthology.org/L14-1510/
https://arxiv.org/abs/2303.14342
https://aclanthology.org/P11-1092/
https://aclanthology.org/P11-1092/


157
Daniel Dahlmeier and Hwee Tou Ng. 2012. Better evaluation for grammatical error

correction. In Proceedings of the 2012 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, pages

568–572, Montréal, Canada. Association for Computational Linguistics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu. 2013. Building a large annotated

corpus of learner English: The NUS corpus of learner English. In Proceedings of the

Eighth Workshop on Innovative Use of NLP for Building Educational Applications,

pages 22–31, Atlanta, Georgia. Association for Computational Linguistics.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang,

and Yaodong Yang. 2024. Safe RLHF: Safe reinforcement learning from human

feedback. In The Twelfth International Conference on Learning Representations.

Robert Dale and Adam Kilgarriff. 2011. Helping our own: The HOO 2011 pilot shared

task. In Proceedings of the 13th European Workshop on Natural Language Generation,

pages 242–249, Nancy, France. Association for Computational Linguistics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino,

Jason Yosinski, and Rosanne Liu. 2020. Plug and play language models: A simple

approach to controlled text generation. Preprint, arXiv:1912.02164.

Christopher Davis, Andrew Caines, Øistein E. Andersen, Shiva Taslimipoor, Helen

Yannakoudakis, Zheng Yuan, Christopher Bryant, Marek Rei, and Paula Buttery.

2024. Prompting open-source and commercial language models for grammatical error

correction of English learner text. In Findings of the Association for Computational

Linguistics: ACL 2024, pages 11952–11967, Bangkok, Thailand. Association for

Computational Linguistics.

https://aclanthology.org/N12-1067/
https://aclanthology.org/N12-1067/
https://aclanthology.org/W13-1703/
https://aclanthology.org/W13-1703/
https://openreview.net/forum?id=TyFrPOKYXw
https://openreview.net/forum?id=TyFrPOKYXw
https://aclanthology.org/W11-2838/
https://aclanthology.org/W11-2838/
https://arxiv.org/abs/1912.02164
https://arxiv.org/abs/1912.02164
https://doi.org/10.18653/v1/2024.findings-acl.711
https://doi.org/10.18653/v1/2024.findings-acl.711


158
Daniel de Vassimon Manela, David Errington, Thomas Fisher, Boris van Breugel, and

Pasquale Minervini. 2021. Stereotype and skew: Quantifying gender bias in pre-

trained and fine-tuned language models. In Proceedings of the 16th Conference of the

European Chapter of the Association for Computational Linguistics: Main Volume,

pages 2232–2242, Online. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of deep bidirectional transformers for language understanding. In Pro-

ceedings of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational

Linguistics.

Mona Diab, Nizar Habash, Owen Rambow, Mohamed AlTantawy, and Yassine Benajiba.

2010. COLABA: Arabic Dialect Annotation and Processing. In Proceedings of

the Workshop on Language Resources and Human Language Technology for Semitic

Languages.

Mona T Diab, Mohamed Al-Badrashiny, Maryam Aminian, Mohammed Attia, Heba

Elfardy, Nizar Habash, Abdelati Hawwari, Wael Salloum, Pradeep Dasigi, and Ramy

Eskander. 2014. Tharwa: A Large Scale Dialectal Arabic-Standard Arabic-English

Lexicon. In Proceedings of the Language Resources and Evaluation Conference

(LREC), pages 3782–3789, Reykjavik, Iceland.

Emily Dinan, Angela Fan, Adina Williams, Jack Urbanek, Douwe Kiela, and Jason We-

ston. 2020a. Queens are powerful too: Mitigating gender bias in dialogue generation.

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language

https://doi.org/10.18653/v1/2021.eacl-main.190
https://doi.org/10.18653/v1/2021.eacl-main.190
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.656


159
Processing (EMNLP), pages 8173–8188, Online. Association for Computational Lin-

guistics.

Emily Dinan, Angela Fan, Ledell Wu, Jason Weston, Douwe Kiela, and Adina Williams.

2020b. Multi-dimensional gender bias classification. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages

314–331, Online. Association for Computational Linguistics.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Reichart. 2018. The hitchhiker‘s

guide to testing statistical significance in natural language processing. In Proceedings

of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 1383–1392, Melbourne, Australia. Association for Computational

Linguistics.

Mahmoud El-Haj. 2020. Habibi - a multi dialect multi national Arabic song lyrics corpus.

In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages

1318–1326, Marseille, France. European Language Resources Association.

Mostafa Elaraby, Ahmed Y. Tawfik, Mahmoud Khaled, Hany Hassan, and Aly Osama.

2018. Gender aware spoken language translation applied to english-arabic. In 2018

2nd International Conference on Natural Language and Speech Processing (ICNLSP),

pages 1–6.

Heba Elfardy, Mohamed Al-Badrashiny, and Mona Diab. 2014. AIDA: Identifying

code switching in informal Arabic text. In Proceedings of the First Workshop on

Computational Approaches to Code Switching, pages 94–101, Doha, Qatar. Association

for Computational Linguistics.

AbdelRahim Elmadany, El Moatez Billah Nagoudi, and Muhammad Abdul-Mageed.

https://doi.org/10.18653/v1/2020.emnlp-main.23
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://aclanthology.org/2020.lrec-1.165/
https://doi.org/10.1109/ICNLSP.2018.8374387
https://doi.org/10.3115/v1/W14-3911
https://doi.org/10.3115/v1/W14-3911


160
2023. Octopus: A multitask model and toolkit for Arabic natural language generation.

In Proceedings of ArabicNLP 2023, pages 232–243, Singapore (Hybrid). Association

for Computational Linguistics.

Ali Emami, Paul Trichelair, Adam Trischler, Kaheer Suleman, Hannes Schulz, and Jackie

Chi Kit Cheung. 2019. The KnowRef coreference corpus: Removing gender and

number cues for difficult pronominal anaphora resolution. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, pages 3952–3961,

Florence, Italy. Association for Computational Linguistics.

Alexander Erdmann, Nizar Habash, Dima Taji, and Houda Bouamor. 2017. Low re-

sourced machine translation via morpho-syntactic modeling: The case of dialectal

Arabic. In Proceedings of Machine Translation Summit XVI: Research Track, pages

185–200, Nagoya Japan.

Fadhl Eryani, Nizar Habash, Houda Bouamor, and Salam Khalifa. 2020. A spelling

correction corpus for multiple Arabic dialects. In Proceedings of the Twelfth Language

Resources and Evaluation Conference, pages 4130–4138, Marseille, France. European

Language Resources Association.

Joel Escudé Font and Marta R. Costa-jussà. 2019. Equalizing gender bias in neural

machine translation with word embeddings techniques. In Proceedings of the First

Workshop on Gender Bias in Natural Language Processing, pages 147–154, Florence,

Italy. Association for Computational Linguistics.

Ramy Eskander, Nizar Habash, Owen Rambow, and Nadi Tomeh. 2013. Processing

spontaneous orthography. In Proceedings of the Conference of the North American

https://doi.org/10.18653/v1/2023.arabicnlp-1.20
https://doi.org/10.18653/v1/P19-1386
https://doi.org/10.18653/v1/P19-1386
https://aclanthology.org/2017.mtsummit-papers.15/
https://aclanthology.org/2017.mtsummit-papers.15/
https://aclanthology.org/2017.mtsummit-papers.15/
https://aclanthology.org/2020.lrec-1.508/
https://aclanthology.org/2020.lrec-1.508/
https://doi.org/10.18653/v1/W19-3821
https://doi.org/10.18653/v1/W19-3821


161
Chapter of the Association for Computational Linguistics (NAACL), pages 585–595,

Atlanta, Georgia.

Asma Etman and Louis Beex. 2015. Language and Dialect Identification: A Survey. In

Proceedings of the Intelligent Systems Conference (IntelliSys), London, UK.

Tao Fang, Shu Yang, Kaixin Lan, Derek F. Wong, Jinpeng Hu, Lidia S. Chao, and

Yue Zhang. 2023. Is chatgpt a highly fluent grammatical error correction system? a

comprehensive evaluation. Preprint, arXiv:2304.01746.

Noura Farra, Nadi Tomeh, Alla Rozovskaya, and Nizar Habash. 2014. Generalized

character-level spelling error correction. In Proceedings of the 52nd Annual Meeting

of the Association for Computational Linguistics (Volume 2: Short Papers), pages

161–167, Baltimore, Maryland. Association for Computational Linguistics.

Mariano Felice and Ted Briscoe. 2015. Towards a standard evaluation method for

grammatical error detection and correction. In Proceedings of the 2015 Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 578–587, Denver, Colorado. Association for

Computational Linguistics.

Mariano Felice, Zheng Yuan, Øistein E. Andersen, Helen Yannakoudakis, and Ekate-

rina Kochmar. 2014. Grammatical error correction using hybrid systems and type

filtering. In Proceedings of the Eighteenth Conference on Computational Natural

Language Learning: Shared Task, pages 15–24, Baltimore, Maryland. Association for

Computational Linguistics.

Charles F Ferguson. 1959. Diglossia. Word, 15(2):325–340.

https://arxiv.org/abs/2304.01746
https://arxiv.org/abs/2304.01746
https://doi.org/10.3115/v1/P14-2027
https://doi.org/10.3115/v1/P14-2027
https://doi.org/10.3115/v1/N15-1060
https://doi.org/10.3115/v1/N15-1060
https://doi.org/10.3115/v1/W14-1702
https://doi.org/10.3115/v1/W14-1702


162
Hassan Gadalla, Hanaa Kilany, Howaida Arram, Ashraf Yacoub, Alaa El-Habashi, Amr

Shalaby, Krisjanis Karins, Everett Rowson, Robert MacIntyre, Paul Kingsbury, David

Graff, and Cynthia McLemore. 1997. CALLHOME Egyptian Arabic transcripts

LDC97T19. Web Download. Philadelphia: Linguistic Data Consortium.

Sarthak Garg, Mozhdeh Gheini, Clara Emmanuel, Tatiana Likhomanenko, Qin Gao,

and Matthias Paulik. 2024. Generating gender alternatives in machine translation.

In Proceedings of the 5th Workshop on Gender Bias in Natural Language Process-

ing (GeBNLP), pages 237–254, Bangkok, Thailand. Association for Computational

Linguistics.

Abbas Ghaddar, Yimeng Wu, Sunyam Bagga, Ahmad Rashid, Khalil Bibi, Mehdi

Rezagholizadeh, Chao Xing, Yasheng Wang, Xinyu Duan, Zhefeng Wang, Baoxing

Huai, Xin Jiang, Qun Liu, and Phillippe Langlais. 2022. Revisiting pre-trained

language models and their evaluation for Arabic natural language processing. In

Proceedings of the 2022 Conference on Empirical Methods in Natural Language

Processing, pages 3135–3151, Abu Dhabi, United Arab Emirates. Association for

Computational Linguistics.

Hila Gonen and Yoav Goldberg. 2019. Lipstick on a pig: Debiasing methods cover

up systematic gender biases in word embeddings but do not remove them. Preprint,

arXiv:1903.03862.

Hila Gonen and Kellie Webster. 2020. Automatically identifying gender issues in machine

translation using perturbations. In Findings of the Association for Computational

Linguistics: EMNLP 2020, pages 1991–1995, Online. Association for Computational

Linguistics.

https://doi.org/10.18653/v1/2024.gebnlp-1.15
https://doi.org/10.18653/v1/2022.emnlp-main.205
https://doi.org/10.18653/v1/2022.emnlp-main.205
https://arxiv.org/abs/1903.03862
https://arxiv.org/abs/1903.03862
https://doi.org/10.18653/v1/2020.findings-emnlp.180
https://doi.org/10.18653/v1/2020.findings-emnlp.180


163
David Graff, Mohamed Maamouri, Basma Bouziri, Sondos Krouna, Seth Kulick, and

Tim Buckwalter. 2009. Standard Arabic Morphological Analyzer (SAMA) Version

3.1. Linguistic Data Consortium LDC2009E73.

Yvette Graham, Nitika Mathur, and Timothy Baldwin. 2014. Randomized significance

tests in machine translation. In Proceedings of the Ninth Workshop on Statistical

Machine Translation, pages 266–274, Baltimore, Maryland, USA. Association for

Computational Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-

dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan,

Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra,

Archie Sravankumar, Artem Korenev, Arthur Hinsvark, and 542 others. 2024. The

llama 3 herd of models. Preprint, arXiv:2407.21783.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola.

2006. A kernel method for the two-sample-problem. In Advances in Neural Information

Processing Systems, volume 19. MIT Press.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and Kenneth Heafield. 2019. Neural

grammatical error correction systems with unsupervised pre-training on synthetic

data. In Proceedings of the Fourteenth Workshop on Innovative Use of NLP for

Building Educational Applications, pages 252–263, Florence, Italy. Association for

Computational Linguistics.

Nizar Habash, Houda Bouamor, and Christine Chung. 2019. Automatic gender identi-

fication and reinflection in Arabic. In Proceedings of the First Workshop on Gender

https://doi.org/10.3115/v1/W14-3333
https://doi.org/10.3115/v1/W14-3333
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://proceedings.neurips.cc/paper/2006/file/e9fb2eda3d9c55a0d89c98d6c54b5b3e-Paper.pdf
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-3822
https://doi.org/10.18653/v1/W19-3822


164
Bias in Natural Language Processing, pages 155–165, Florence, Italy. Association for

Computational Linguistics.

Nizar Habash, Mona Diab, and Owen Rambow. 2012a. Conventional orthography for

dialectal Arabic. In Proceedings of the Eighth International Conference on Language

Resources and Evaluation (LREC‘12), pages 711–718, Istanbul, Turkey. European

Language Resources Association (ELRA).

Nizar Habash, Fadhl Eryani, Salam Khalifa, Owen Rambow, Dana Abdulrahim, Alexan-

der Erdmann, Reem Faraj, Wajdi Zaghouani, Houda Bouamor, Nasser Zalmout, Sara

Hassan, Faisal Al-Shargi, Sakhar Alkhereyf, Basma Abdulkareem, Ramy Eskander,

Mohammad Salameh, and Hind Saddiki. 2018. Unified guidelines and resources for

Arabic dialect orthography. In Proceedings of the Eleventh International Conference

on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European

Language Resources Association (ELRA).

Nizar Habash, Ramy Eskander, and Abdelati Hawwari. 2012b. A Morphological Analyzer

for Egyptian Arabic. In Proceedings of the Workshop of the Special Interest Group on

Computational Morphology and Phonology (SIGMORPHON), pages 1–9, Montréal,

Canada.

Nizar Habash and David Palfreyman. 2022. ZAEBUC: An annotated Arabic-English

bilingual writer corpus. In Proceedings of the Thirteenth Language Resources and Eval-

uation Conference, pages 79–88, Marseille, France. European Language Resources

Association.

Nizar Habash, Owen Rambow, Mona Diab, and Reem Kanjawi-Faraj. 2008. Guidelines

https://aclanthology.org/L12-1328/
https://aclanthology.org/L12-1328/
https://aclanthology.org/L18-1574/
https://aclanthology.org/L18-1574/
https://aclanthology.org/2022.lrec-1.9/
https://aclanthology.org/2022.lrec-1.9/


165
for Annotation of Arabic Dialectness. In Proceedings of the Workshop on HLT & NLP

within the Arabic World, Marrakech, Morocco.

Nizar Habash and Ryan Roth. 2011. Using deep morphology to improve automatic error

detection in Arabic handwriting recognition. In Proceedings of the Conference of the

Association for Computational Linguistics (ACL), pages 875–884, Portland, Oregon,

USA.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter. 2007. On Arabic Transliteration.

In A. van den Bosch and A. Soudi, editors, Arabic Computational Morphology:

Knowledge-based and Empirical Methods, pages 15–22. Springer, Netherlands.

Nizar Y Habash. 2010. Introduction to Arabic natural language processing, volume 3.

Morgan & Claypool Publishers.

Xingwei He. 2021. Parallel refinements for lexically constrained text generation with

BART. In Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing, pages 8653–8666, Online and Punta Cana, Dominican Republic.

Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural

Computation, 9(8):1735–1780.

Xinyu Hua and Lu Wang. 2020. PAIR: Planning and iterative refinement in pre-trained

transformers for long text generation. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 781–793, Online.

Association for Computational Linguistics.

John Hutchins. 2004. The first public demonstration of machine translation: the

georgetown-ibm system, 7th january 1954.

https://doi.org/10.18653/v1/2021.emnlp-main.681
https://doi.org/10.18653/v1/2021.emnlp-main.681
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/2020.emnlp-main.57
https://doi.org/10.18653/v1/2020.emnlp-main.57


166
Go Inoue, Bashar Alhafni, Nurpeiis Baimukan, Houda Bouamor, and Nizar Habash.

2021. The interplay of variant, size, and task type in Arabic pre-trained language

models. In Proceedings of the Sixth Arabic Natural Language Processing Workshop,

pages 92–104, Kyiv, Ukraine (Virtual). Association for Computational Linguistics.

Go Inoue, Salam Khalifa, and Nizar Habash. 2022. Morphosyntactic tagging with pre-

trained language models for Arabic and its dialects. In Findings of the Association for

Computational Linguistics: ACL 2022, pages 1708–1719, Dublin, Ireland. Association

for Computational Linguistics.

Mustafa Jarrar, Nizar Habash, Faeq Alrimawi, Diyam Akra, and Nasser Zalmout. 2016.

Curras: an annotated corpus for the Palestinian Arabic dialect. Language Resources

and Evaluation, pages 1–31.

Serena Jeblee, Weston Feely, Houda Bouamor, Alon Lavie, Nizar Habash, and Kemal

Oflazer. 2014. Domain and dialect adaptation for machine translation into egyptian

Arabic. In Proceedings of the Workshop for Arabic Natural Language Processing

(WANLP), pages 196–206, Doha, Qatar.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin

Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of hallucination in natural

language generation. ACM Comput. Surv., 55(12).

Renlong Jie, Xiaojun Meng, Lifeng Shang, Xin Jiang, and Qun Liu. 2024. Prompt-

based length controlled generation with multiple control types. In Findings of the

Association for Computational Linguistics: ACL 2024, pages 1067–1085, Bangkok,

Thailand. Association for Computational Linguistics.

https://aclanthology.org/2021.wanlp-1.10/
https://aclanthology.org/2021.wanlp-1.10/
https://doi.org/10.18653/v1/2022.findings-acl.135
https://doi.org/10.18653/v1/2022.findings-acl.135
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.18653/v1/2024.findings-acl.63
https://doi.org/10.18653/v1/2024.findings-acl.63


167
Melvin Johnson. 2020. A scalable approach to reducing gender bias in google translate.

Google AI Blog.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng

Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, and 1 others.

2016. Google’s multilingual neural machine translation system: Enabling zero-shot

translation. arXiv preprint arXiv:1611.04558.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. 2020.

The state and fate of linguistic diversity and inclusion in the NLP world. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics, pages

6282–6293, Online. Association for Computational Linguistics.

Marcin Junczys-Dowmunt and Roman Grundkiewicz. 2014. The AMU system in the

CoNLL-2014 shared task: Grammatical error correction by data-intensive and feature-

rich statistical machine translation. In Proceedings of the Eighteenth Conference on

Computational Natural Language Learning: Shared Task, pages 25–33, Baltimore,

Maryland. Association for Computational Linguistics.

Marcin Junczys-Dowmunt and Roman Grundkiewicz. 2016. Phrase-based machine trans-

lation is state-of-the-art for automatic grammatical error correction. In Proceedings of

the 2016 Conference on Empirical Methods in Natural Language Processing, pages

1546–1556, Austin, Texas. Association for Computational Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Shubha Guha, and Kenneth Heafield.

2018. Approaching neural grammatical error correction as a low-resource machine

translation task. In Proceedings of the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.3115/v1/W14-1703
https://doi.org/10.3115/v1/W14-1703
https://doi.org/10.3115/v1/W14-1703
https://doi.org/10.18653/v1/D16-1161
https://doi.org/10.18653/v1/D16-1161
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055


168
Volume 1 (Long Papers), pages 595–606, New Orleans, Louisiana. Association for

Computational Linguistics.

Juseon-Do, Jingun Kwon, Hidetaka Kamigaito, and Manabu Okumura. 2024. In-

structCMP: Length control in sentence compression through instruction-based large

language models. In Findings of the Association for Computational Linguistics:

ACL 2024, pages 8980–8996, Bangkok, Thailand. Association for Computational

Linguistics.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves,

and Koray Kavukcuoglu. 2017. Neural machine translation in linear time. Preprint,

arXiv:1610.10099.

Moussa Kamal Eddine, Nadi Tomeh, Nizar Habash, Joseph Le Roux, and Michalis

Vazirgiannis. 2022. AraBART: a pretrained Arabic sequence-to-sequence model for

abstractive summarization. In Proceedings of the Seventh Arabic Natural Language

Processing Workshop (WANLP), pages 31–42, Abu Dhabi, United Arab Emirates

(Hybrid). Association for Computational Linguistics.

Masahiro Kaneko, Aizhan Imankulova, Danushka Bollegala, and Naoaki Okazaki. 2022.

Gender bias in masked language models for multiple languages. In Proceedings of the

2022 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 2740–2750, Seattle, United States.

Association for Computational Linguistics.

Masahiro Kaneko and Mamoru Komachi. 2019. Multi-head multi-layer attention to deep

language representations for grammatical error detection. Preprint, arXiv:1904.07334.

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun Suzuki, and Kentaro Inui. 2020.

https://doi.org/10.18653/v1/2024.findings-acl.532
https://doi.org/10.18653/v1/2024.findings-acl.532
https://doi.org/10.18653/v1/2024.findings-acl.532
https://arxiv.org/abs/1610.10099
https://doi.org/10.18653/v1/2022.wanlp-1.4
https://doi.org/10.18653/v1/2022.wanlp-1.4
https://doi.org/10.18653/v1/2022.naacl-main.197
https://arxiv.org/abs/1904.07334
https://arxiv.org/abs/1904.07334


169
Encoder-decoder models can benefit from pre-trained masked language models in

grammatical error correction. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 4248–4254, Online. Association for

Computational Linguistics.

Masahiro Kaneko and Naoaki Okazaki. 2023. Reducing sequence length by predicting

edit spans with large language models. In Proceedings of the 2023 Conference on

Empirical Methods in Natural Language Processing, pages 10017–10029, Singapore.

Association for Computational Linguistics.

Masahiro Kaneko and Naoaki Okazaki. 2024. Controlled generation with prompt inser-

tion for natural language explanations in grammatical error correction. In Proceedings

of the 2024 Joint International Conference on Computational Linguistics, Language

Resources and Evaluation (LREC-COLING 2024), pages 3955–3961, Torino, Italia.

ELRA and ICCL.

Anisia Katinskaia and Roman Yangarber. 2024. GPT-3.5 for grammatical error correction.

In Proceedings of the 2024 Joint International Conference on Computational Linguis-

tics, Language Resources and Evaluation (LREC-COLING 2024), pages 7831–7843,

Torino, Italia. ELRA and ICCL.

Styliani Katsarou, Borja Rodríguez-Gálvez, and Jesse Shanahan. 2022. Measuring gender

bias in contextualized embeddings. In Computer Sciences and Mathematics Forum,

volume 3, page 3. MDPI.

Satoru Katsumata and Mamoru Komachi. 2020. Stronger baselines for grammatical error

correction using a pretrained encoder-decoder model. In Proceedings of the 1st Con-

ference of the Asia-Pacific Chapter of the Association for Computational Linguistics

https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.619
https://doi.org/10.18653/v1/2023.emnlp-main.619
https://aclanthology.org/2024.lrec-main.350/
https://aclanthology.org/2024.lrec-main.350/
https://aclanthology.org/2024.lrec-main.692/
https://doi.org/10.18653/v1/2020.aacl-main.83
https://doi.org/10.18653/v1/2020.aacl-main.83


170
and the 10th International Joint Conference on Natural Language Processing, pages

827–832, Suzhou, China. Association for Computational Linguistics.

Amr Keleg, Sharon Goldwater, and Walid Magdy. 2023. ALDi: Quantifying the Arabic

level of dialectness of text. In Proceedings of the 2023 Conference on Empirical

Methods in Natural Language Processing, pages 10597–10611, Singapore. Association

for Computational Linguistics.

Amr Keleg and Walid Magdy. 2023. Arabic dialect identification under scrutiny: Limita-

tions of single-label classification. In Proceedings of ArabicNLP 2023, pages 385–398,

Singapore (Hybrid). Association for Computational Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard

Socher. 2019. Ctrl: A conditional transformer language model for controllable genera-

tion. Preprint, arXiv:1909.05858.

Salam Khalifa, Nizar Habash, Dana Abdulrahim, and Sara Hassan. 2016a. A Large Scale

Corpus of Gulf Arabic. In Proceedings of the Language Resources and Evaluation

Conference (LREC), Portorož, Slovenia.

Salam Khalifa, Nizar Habash, Dana Abdulrahim, and Sara Hassan. 2016b. A large

scale corpus of Gulf Arabic. In Proceedings of the Tenth International Conference on

Language Resources and Evaluation (LREC‘16), pages 4282–4289, Portorož, Slovenia.

European Language Resources Association (ELRA).

Salam Khalifa, Nizar Habash, Fadhl Eryani, Ossama Obeid, Dana Abdulrahim, and

Meera Al Kaabi. 2018. A morphologically annotated corpus of emirati Arabic. In

Proceedings of the Language Resources and Evaluation Conference (LREC), Miyazaki,

Japan.

https://doi.org/10.18653/v1/2023.emnlp-main.655
https://doi.org/10.18653/v1/2023.emnlp-main.655
https://doi.org/10.18653/v1/2023.arabicnlp-1.31
https://doi.org/10.18653/v1/2023.arabicnlp-1.31
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://aclanthology.org/L16-1679/
https://aclanthology.org/L16-1679/


171
Salam Khalifa, Nasser Zalmout, and Nizar Habash. 2020. Morphological analysis and

disambiguation for Gulf Arabic: The interplay between resources and methods. In

Proceedings of the Twelfth Language Resources and Evaluation Conference, pages

3895–3904, Marseille, France. European Language Resources Association.

Ahmed El Kholy and Nizar Habash. 2010. Techniques for Arabic Morphological Deto-

kenization and Orthographic Denormalization. In Proceedings of the Workshop on

Language Resources and Human Language Technology for Semitic Languages, Val-

letta, Malta.

Sheldon Klein. 1965. Control of style with a generative grammar. Language, 41(4):619–

631.

Sheldon Klein and Robert F. Simmons. 1963. Syntactic dependence and the computer

generation of coherent discourse. Mech. Transl. Comput. Linguistics, 7:50–61.

Ekaterina Kochmar, Øistein Andersen, and Ted Briscoe. 2012. HOO 2012 error recogni-

tion and correction shared task: Cambridge University submission report. In Proceed-

ings of the Seventh Workshop on Building Educational Applications Using NLP, pages

242–250, Montréal, Canada. Association for Computational Linguistics.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003. Statistical phrase-based translation.

In Proceedings of the 2003 Human Language Technology Conference of the North

American Chapter of the Association for Computational Linguistics, pages 127–133.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.

2023. Large language models are zero-shot reasoners. Preprint, arXiv:2205.11916.

Hadas Kotek, Rikker Dockum, and David Sun. 2023. Gender bias and stereotypes in

https://aclanthology.org/2020.lrec-1.480/
https://aclanthology.org/2020.lrec-1.480/
http://www.jstor.org/stable/411529
https://api.semanticscholar.org/CorpusID:1338336
https://api.semanticscholar.org/CorpusID:1338336
https://aclanthology.org/W12-2028/
https://aclanthology.org/W12-2028/
https://aclanthology.org/N03-1017/
https://arxiv.org/abs/2205.11916
https://doi.org/10.1145/3582269.3615599
https://doi.org/10.1145/3582269.3615599


172
large language models. In Proceedings of The ACM Collective Intelligence Conference,

CI ’23, page 12–24. ACM.

Aomi Koyama, Tomoshige Kiyuna, Kenji Kobayashi, Mio Arai, and Mamoru Komachi.

2020. Construction of an evaluation corpus for grammatical error correction for

learners of Japanese as a second language. In Proceedings of the Twelfth Language

Resources and Evaluation Conference, pages 204–211, Marseille, France. European

Language Resources Association.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq

Joty, Richard Socher, and Nazneen Fatema Rajani. 2021. GeDi: Generative discrimi-

nator guided sequence generation. In Findings of the Association for Computational

Linguistics: EMNLP 2021, pages 4929–4952, Punta Cana, Dominican Republic.

Association for Computational Linguistics.
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van der Lee, Stefan Grondelaers, Nelleke Oostdijk, Dirk Speelman, Antal van den

Bosch, Ritesh Kumar, Bornini Lahiri, and Mayank Jain. 2018. Language identifi-

cation and morphosyntactic tagging: The second VarDial evaluation campaign. In

Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and

https://doi.org/10.18653/v1/N18-1087
https://doi.org/10.18653/v1/N18-1087
https://doi.org/10.18653/v1/P19-1173
https://doi.org/10.18653/v1/P19-1173
https://doi.org/10.18653/v1/2020.acl-main.736
https://doi.org/10.18653/v1/2020.acl-main.736
https://doi.org/10.18653/v1/W17-1201
https://doi.org/10.18653/v1/W17-1201
https://aclanthology.org/W18-3901/
https://aclanthology.org/W18-3901/


207
Dialects (VarDial 2018), pages 1–17, Santa Fe, New Mexico, USA. Association for

Computational Linguistics.

Rabih Zbib, Erika Malchiodi, Jacob Devlin, David Stallard, Spyros Matsoukas, Richard

Schwartz, John Makhoul, Omar F. Zaidan, and Chris Callison-Burch. 2012. Machine

Translation of Arabic Dialects. In Proceedings of the Conference of the North American

Chapter of the Association for Computational Linguistics (NAACL), pages 49–59,

Montréal, Canada.

Hanqing Zhang and Dawei Song. 2022. DisCup: Discriminator cooperative unlikelihood

prompt-tuning for controllable text generation. In Proceedings of the 2022 Conference

on Empirical Methods in Natural Language Processing, pages 3392–3406, Abu Dhabi,

United Arab Emirates. Association for Computational Linguistics.

Yu Zhang, Yue Zhang, Leyang Cui, and Guohong Fu. 2023. Non-autoregressive text

editing with copy-aware latent alignments. In Proceedings of the 2023 Conference

on Empirical Methods in Natural Language Processing, pages 7075–7085, Singapore.

Association for Computational Linguistics.

Zhehao Zhang, Ryan A. Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani,

Franck Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, Ruiyi Zhang, Jiuxiang

Gu, Tyler Derr, Hongjie Chen, Junda Wu, Xiang Chen, Zichao Wang, Subrata Mitra,

Nedim Lipka, and 2 others. 2024. Personalization of large language models: A survey.

Preprint, arXiv:2411.00027.

Jieyu Zhao, Subhabrata Mukherjee, Saghar Hosseini, Kai-Wei Chang, and Ahmed Has-

san Awadallah. 2020. Gender bias in multilingual embeddings and cross-lingual

transfer. In Proceedings of the 58th Annual Meeting of the Association for Com-

https://doi.org/10.18653/v1/2022.emnlp-main.223
https://doi.org/10.18653/v1/2022.emnlp-main.223
https://doi.org/10.18653/v1/2023.emnlp-main.437
https://doi.org/10.18653/v1/2023.emnlp-main.437
https://arxiv.org/abs/2411.00027
https://doi.org/10.18653/v1/2020.acl-main.260
https://doi.org/10.18653/v1/2020.acl-main.260


208
putational Linguistics, pages 2896–2907, Online. Association for Computational

Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. 2018a.

Gender bias in coreference resolution: Evaluation and debiasing methods. In Proceed-

ings of the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers),

pages 15–20, New Orleans, Louisiana. Association for Computational Linguistics.

Jieyu Zhao, Yichao Zhou, Zeyu Li, Wei Wang, and Kai-Wei Chang. 2018b. Learning

gender-neutral word embeddings. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, pages 4847–4853, Brussels, Belgium.

Association for Computational Linguistics.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and Jingming Liu. 2019. Improving

grammatical error correction via pre-training a copy-augmented architecture with

unlabeled data. In Proceedings of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, Vol-

ume 1 (Long and Short Papers), pages 156–165, Minneapolis, Minnesota. Association

for Computational Linguistics.

Yuanyuan Zhao, Nan Jiang, Weiwei Sun, and Xiaojun Wan. 2018c. Overview of the nlpcc

2018 shared task: Grammatical error correction. In Natural Language Processing and

Chinese Computing.

Houquan Zhou, Yumeng Liu, Zhenghua Li, Min Zhang, Bo Zhang, Chen Li, Ji Zhang,

and Fei Huang. 2023a. Improving Seq2Seq grammatical error correction via decoding

https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/D18-1521
https://doi.org/10.18653/v1/D18-1521
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/2023.findings-emnlp.495
https://doi.org/10.18653/v1/2023.findings-emnlp.495


209
interventions. In Findings of the Association for Computational Linguistics: EMNLP

2023, pages 7393–7405, Singapore. Association for Computational Linguistics.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ethan Wilcox, Ryan Cotterell, and Mrinmaya

Sachan. 2023b. Controlled text generation with natural language instructions. In

Proceedings of the 40th International Conference on Machine Learning, volume 202

of Proceedings of Machine Learning Research, pages 42602–42613. PMLR.

Ran Zmigrod, Sabrina J. Mielke, Hanna Wallach, and Ryan Cotterell. 2019. Counter-

factual data augmentation for mitigating gender stereotypes in languages with rich

morphology. In Proceedings of the 57th Annual Meeting of the Association for Compu-

tational Linguistics, pages 1651–1661, Florence, Italy. Association for Computational

Linguistics.

Inès Zribi, Rahma Boujelbane, Abir Masmoudi, Mariem Ellouze, Lamia Belguith, and

Nizar Habash. 2014. A conventional orthography for Tunisian Arabic. In Proceedings

of the Language Resources and Evaluation Conference (LREC), Reykjavik, Iceland.

https://doi.org/10.18653/v1/2023.findings-emnlp.495
https://doi.org/10.18653/v1/2023.findings-emnlp.495
https://doi.org/10.18653/v1/2023.findings-emnlp.495
https://proceedings.mlr.press/v202/zhou23g.html
https://doi.org/10.18653/v1/P19-1161
https://doi.org/10.18653/v1/P19-1161
https://doi.org/10.18653/v1/P19-1161

	Vita
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Overview and Motivation
	Dissertation Outline
	Contributions
	Publications

	Arabic Linguistic Background
	Arabic and its Dialects
	Arabic Morphology
	Arabic Orthography

	Natural Language Generation Background
	Natural Language Generation
	A Short History of Natural Language Generation
	Types of Natural Language Generation
	Neural Architectures for Natural Language Generation

	Controlled Natural Language Generation
	Language Generation Tasks in this Dissertation

	Arabic Gender Rewriting
	Introduction
	Background and Related Work
	The Arabic Parallel Gender Corpus
	Corpus Selection
	Corpus Annotation
	Automatic Word-Level Annotations
	Corpus Overview and Statistics

	Approach
	Joint Gender Rewriting
	Multi-Step Gender Rewriting

	Experimental Setup
	Results
	Error Analysis
	Use Case: Post-Editing MT Output

	The User-Aware Arabic Gender Rewriter
	The Shared Task on Arabic Gender Rewriting
	Data
	Participants and Systems
	Results
	Error Analysis

	Summary

	Arabic Grammatical Error Detection and Correction
	Introduction
	Background and Related Work
	Approach
	Arabic Grammatical Error Detection
	Arabic Grammatical Error Correction

	Experimental Setup
	Data
	Experiments
	Results
	Error Analysis

	Summary

	Dialectal Text Normalization
	Introduction
	Background and Related Work
	Approach
	Experimental Setup
	Data
	Experiments
	Results
	Error Analysis

	Summary

	Text Editing
	Introduction
	Background and Related Work
	Approach
	Edit Extraction
	Edit Representation
	Edits Coverage

	Experimental Setup
	Data
	Experiments
	Results
	Runtime Performance
	Error Analysis

	Summary

	Summary and Conclusions
	Arabic Gender Rewriting
	Arabic Grammatical Error Detection and Correction
	Dialectal Text Normalization
	Text Editing
	Future Work

	Chapter 4 Appendix
	LLMs Prompts
	LLMs Results

	Chapter 5 Appendix
	LLMs Prompts
	LLMs Results
	Error Type Statistics

	Chapter 6 Appendix
	LLMs Prompts
	LLMs Results

	Chapter 7 Appendix
	Edit Tagging Results


